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Simulated Annealing was used to optimize three constrained simulation models.

For each of these models, seven different acceptance functions were evaluated and

compared against the performance of Local Search. These comparisons demonstrated the

affect that different acceptance functions have on the performance of the algorithm. The

performance was measured by the average solution quality and average efficiency obtained

from several runs.

The first model facilitated the implementation of Simulated Annealing using the

SLAM simulation language. The configuration space was small, described by only two

decision variables. It demonstrated the viability of using Simulated Annealing to optimize

the variable settings in a simulation model. The second model, with six decision variables,

provided greater insight to the advantages and limitations of Simulated Annealing. This

model was implemented as an open queuing network. The third model, similar to the

second, was implemented as a closed queuing network. The results from this variation

were completely unexpected. They showed a wide performance separation among the

different acceptance functions that was not present in the first two models.

No attempt was made to justify the use of Simulated Annealing from a theoretical

perspective. Rather, empirical results from the three models were used to infer the

practical utility of the algorithm.

ix



THE APPLICATION OF SIMULATED ANNEALING TO STOCHASTIC
SYSTEMS

11 Io~rdu.ctio~

Simulated Annealing provides a means for optimizing the inputs to a simulation

model. Simulated Annealing optimizes an unknown function by mimicking the physical

process of annealing. The function being modeled typically represents a system. In this

research, Simulated Annealing is applied to stochastic models.

A simulation model can capture much of the randomness found in a system that a

functional model cannoL Most systems yield variable outcomes under the same conditions

due to some element of uncertainty. The response describes not a single outcme, but a

sample from a population of outcomes. The following research examines Simulated

Annealing as a way to find a desired, near-optimal configuration of a stochastic system.

1.1. Background

Traditionally, a problem is modeled as a "black box" requiring a variety of inputs

and generating some output. The problem solver must model the "black box" process,

decide which inputs to include, and determine an appropriate range of values for each

input. Each problem instance forms relationships among the inputs, or decision variables,
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and the output, or response variable. For example, assume that you want to design a

satellite for space exploration: the decision variables are the spacecraft bus and the

sensors placed on the satellite; the response variable is the mission value of the satellite.

The spacecraft bus inherently constrains the total power, volume and mass available. Each

sensor uniquely determines a power requirement, unit volume, mass, and mission-value. A

"black box" formulation would use these relationships to determine the overall mission-

value of a given satellite design, or configuration of decision variables. Each combination

of decision variables describes an alternative satellite design.

Optimization of a problem tries to find a configuration of decision variables that

results in the "best" response. Typically, a response variable can be given a numerical

value either as the result of a direct numerical measurement, like the mission-value of a

satellite design, or as the result of a transformation from a qualitative measurement to a

numerical scale. In either case, the possible responses can be ordered in some way from

smallest, or minimum valued response, to the largest, or maximum valued response. In

most problems, the "best" response corresponds to either the minimum or maximum

depending on the problem formulation and the goal, or objective, of the problem solver.

There are many different ways to find an optimum configuration. The preferred

model depends on the nature of the "black box" process. If a set of analytic expressions

adequately represents the process, then an analytic technique can often be used to find an

optimum. Computer algorithms based mn analytic techniques solve large problems in

reasonable amounts of computing time (CPU time).

In many cases however, the number of possible configurations, the nature of the

objective, or the complex nature of the process prohibits the use of analytic algorithms to

ti d an optimum (20:33-4). In these cases, the configurations can be searched empirically,

using a heuristic technique to guide the search to an approximate optimum. A heuristic
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algorithm is considered valid if it can produce an acceptable configuration within the limits

of computing time (20:36). Local Search and a variant, Simulated Annealing, are heuristic

algorithms that have been used to find near-optimal configurations to combinatorial

problems.

1.2. Problem

Local Search and Simulated Annealing have been applied to deterministic problems,

where the responses are modeled by analytic functions. This research addresses the

adaptation of Simulated Annealing to stochastic problems, where the responses are

modeled more appropriately by simulations. Although Local Search and Simulated

Annealing will be discussed at length in Chapter 2, some brief remarks are needed to put

the problem in context.

Loca' .*,-..:h compares alternative configurations using their response values. The

method retains the configuration resulting in a more optimal value in each successive

comparison. Simulated Annealing compares the responses of alternative configurations

using an acceptance test. The test accepts alternative configurations based on the

difference in response value. It may, according to a probability density function, retain

less optimal alternatives. This ability to occasionally degrade the solution allows the

algorithm to escape poor local optima; an ability missing in the Local Search method.

Theoretical arguments prove that Simulated Annealing will converge to the true

optimum given an infinite run length and using a specific acceptance test. In practice, the

algorithm runs for a finite length and results in a near-optimum solution using various

acceptance tests. These results pertain solely to deterministic problems. What happens
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when the problems are stochastic? Some research has been done showing the promise of

adapting the algorithm for these problems, but much has yet to be explored (13:395).

The existing literature does not address the relative performance of differing acceptance

tests applied to stochastic problems. This research will investigate the performance of

seven such alternatives.

1.3. Scope

Three representative problems are modeled using the SLAM II simulation language.

The performance of Local Search and Simulated Annealing with seven alternative

acceptance tests are compared for quality and efficiency in each of these problem

instances. The estimated optimal response measures solution quality. The actual

computer time used is the chosen measure of computational efficiency. Comparisons

between the two measures can then be used to infer which of the algorithms perform

better than the others for the models investigated.

1.4. General Approach

Three separate simulation models are used to compare the different algorithms. The

first model, the timing of traffic lights, is a simple model with only two decision variables.

The simplicity of this model enables the development of an overall approach. The

approach itself concerns four major components:
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1. Formulation of the simulation model,
2. Formulation of the heuristic algorithm,
3. Selection of the acceptance tests, and
4. Development of the comparison tests.

The second model, the configuration of job-shop machines, is a more complicated

model with six decision variables. The real-world complexity of this model and large

variations in response help substantiate the general methodology for optimizing stochastic

problems. The machines are configured so that parts can enter and leave the system

freely. This is an open-queuing network. The third simulation model alters the flow of

parts by fixing the number in the system and never letting them leave. This is a closed-

queuing network.

1.5. Sequence of Presentation

A review of the current literature provides a foundation for the methodology. The

review begins with the methods of heuristic programming and Simulated Annealing and

then proceeds to the results of theory and practice. A review of stochastic optimization

bridges the conceptual gap between analytic and stochastic models. A methodology and

several alternative acceptance tests is developed for Simulated Annealing. The three

problems discussed test the methodology by generating empirical data and inferring

relationships among the alternatives. These results are used to motivate additional

Simulated Annealing research.

5
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The majority of the literature concerning Simulated Annealing deals with

combinatorial problems whose response to a given set of inputs is constant. Although

simulation problems differ in the nature of the response, the results outlined in the litera-

ture provide a starting point for adapting the algorithm. The results detail both the

theoretical performance and the actual empirical performance of the algorithm for a

number of problem classes. These results guide the methodology developed in a later

section. First, however, a discussion of heuristic algorithms introduce the basic concepts

needed.

2.1. Heuristic Algorithms

A heuristic algorithm compares two responses, decides which one is more optimal,

and concludes that the corresponding configuration is better (20:35). The simplest way to

find an optimum using this strategy is to compare the responses from all possible

configurations and pick the best one, a technique called exhaustive enumeration.

Unfortunately, most problems have far too many possible configurations to apply this

technique within reasonable time limits. For instance, a problem with m decision variables,

each with n possible values, has nm possible configurations (19:73). If n=m=6 then there

would be 46,656 configurations. Assuming it took one second to evaluate each response,

it would take thirteen hours to complete the algorithm. If the number of possible values

increased by just one, n=7, the time required to complete the algorithm would increase to
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seventy-eight hours. When the solution time increases exponentially as the problem size

increases linearly, the problem is classified as NP-complete (non deterministic polynomial

time complete) (18:671). Clearly, exhaustive enumeration is impractical for many real-life

problems.

Although real-life problems may become very large, they are nevertheless bounded

in size and constrained in time (20:35). There are always a finite number of possible

configurations to examine and there is always a finite time within which the problem must

be resolved. These restrictions allow us to observe that:

Problems having the same mathematical model, but different bounds on either the
size of their input domain or the computing time, must be considered as different
problems and hence may require very different heuristic algorithms to
solve.(20:35)

Certainly exhaustive enumeration guarantees that the optimum will eventually be found.

In many cases, however, the best configuration obtained in a given number of hours,

minutes, or even seconds must be used instead of the true optimum. The objective of an

algorithm tailored to execute withir specified time limit must replace optimality with

acceptability (20:40). For instance, .IP-complete problems often require too much

computing time to solve for the exact optimum, so a near-optimal solution must be

accepted. The only justification for the claim that a given solution is acceptable comes

from the empirical evidence obtained from sample problems and the reliability implied by

that evidence.(20:42)

Assuming that several algorithms can be formulated to execute within a specified

time limit for a given problem instance, the question remains as to which algorithm is best.

S. Lin proposed a method to compare different heuristic algorithms by focusing first on

solution quality and then on efficiency using these qualitative definitions:
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DEFINITION 2.1: DOMINATE
If the solution produced by algorithm A has a high probability of being closer to
the optimum than the solution produced by algorithm B, then A dominates B.

DEFINITION 2.2: COMPETE
If neither algorithm A nor algorithm B dominates, then A and B compete.

DEFINITION 2.3: EFFICIENT
If algorithm A produces solutions substantially faster than algorithm B, then A is
more efficient than B.

DEFINITION 2.4: BETTER
If algorithm A dominates algorithm B or if algorithm A is more efficient than
algorithm B, then A is better than B (20:40-41).

For a given problem instance with alternative algorithms, the performance of each

algorithm can only be determined through experimentation, consensus, or structural

analysis (20:41). Each person can evaluate the alternative algorithms using their own

judgment, but an accepted method for comparison lends more credibility to the results.

Kirkpatrick et al. suggest that the average performance of competing algorithms provides

the most practical basis for comparison (18:672). Measures of solution quality and

efficiency constitute the performance measures used for comparison in this thesis. The

alternative algorithms include Local Search and variations of Simulated Annealing.

2.1.1. Local Search

Local Search, the simplest alternative algorithm, guarantees that a locally optimal

configuration will be found. To understand why this is so, some nomenclature must be

presented. Let S represent the set of all possible configurations of decision variables and s

represent a single configuratior, s e S. Define the distance to be minimized between

configurations sj and s2 (20:38):
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d(s1,s2)=-J{the number of objects in s; not in s 2 +

the number of objects in s2 not in s (

S1 s2

Where a decision variable is the number of objects of a certain type, a subset of the

configuration of objects. Define the neighborhood of a configuration s as the subset of

configurations in S that lie within a specified distance, designated by X (20:37-8):

N(s) = Is': d(s,s')<5X and s'eS} (2.2)

Local Search proceeds from these definitions. First, an initial configuration is

selected at random from S and denoted the incumbent optimal configuration, si, and its

response Yi determined. Next, a neighboring configuration is selected at random and

denoted the challenger, s'Pand its response Y'i determined. If the challenger's response is

closer to the objective than the incumbent's response, then it replaces the incumbent,

otherwise it is rejected. Challengers are tried successively until an incumbent is found

such that none of its neighbors' responses are closer to the objective. The final incumbent

is, by definition, a local optimum (20:37-8).
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Solution quality depends heavily on the starting location in the configuration space

S. Once the method reaches a local a optimum, it cannot escape and the result may be a

poor solution. To overcome this limitation, an analyst typically applies the Local Search

algorithm from various initial configurations and chooses the best solution as the final

optimal configuration. When the configuration space contains many poor local optima,

Local Search yields poor results.

2.1.2. Simulated Annealing

The Simulated Annealing algorithm is a variant of Local Search that overcomes this

problem. In Local Search, only challenger configurations that improve the objective are

allowed to replace the incumbent. Simulated Annealing relaxes the acceptance of

challengers to include "some" that are worse alternatives, enabling the algorithm to escape

poor local optima.

The method determines when a less optimal configuration should be retained by

emulating the physical process of annealing. It simulates a physical process, which is the

reason for naming the technique "Simulated Annealing." A group of researchers led by

Kirkpatrick is credited for originally developing the algorithm and Cemy is credited for

establishing its usefulness in solving combinatorial problems (18: 7).

2.1.2.1. Physical Annealing.

Annealing improves the pliability of a metal or alloy by minimizing internal stress.

The metal is heated to a specified temperature to relieve the stress and then cooled slowly

to room temperature to keep the stress small. Fast cooling, known as quenching, induces

large amounts of internal stress which causes brittleness. A metal can be shaped by using

the annealing process to relieve the stress of working it (2:429).

Internal stress results from the build-up of potential energy stored in the

configuration of atoms. Heating the metal allows the atoms to move randomly into many

10



configurations. Slowly cooling the metal establishes and maintains the atoms near thermal

equilibrium.

2.1.2.2. Theimal Equilibrium.

When a metal is in thermal equilibrium, the probability of a configuration of atoms having

a given potential energy is determined by the specified temperature. In equilibrium, at

temperature T, the probability of atoms being in a state with a potential energy E1 is given

by the Boltzmann distribution (21:1088):

P(Energy = E 1 e-Flk°r (2.3)
Z(T)

Where kB is the Boltzmann constant, a constant of proportionality which converts units of

temperature into units of energy (6:83). This conversion makes the exponent

dimensionless. When applied to combinatorial problems, Simulated Annealing drops this

particular constant since the response value does not measure energy.

As time progresses, a given configuration of atoms may transition to a neighboring

configuration with potential energy E2. The likelihood of transitioning depends upon the

change in potential energy E2- El and the temperature T. If the transition would result in

a lower potential energy, then the transition occurs. If the change in energy would

increase the system's potential, then the transition occurs with probability (29:7):

P(Transition) = e-E2 -E)/kET (2.4)

This equation represents the a priori probability that the system will transition to the new

configuration (21:1089). It provides the basis for determining the likelihood of a transition
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for any process in equilibrium. For any system in equilibrium at a given temperature, only

two elements are needed calculate the probability: a configuration and a value for the

resultant energy (7:49).

2.1.2.3. Analogy.

Simulated Annealing uses this basis in determining the acceptance of a detrimental

move. Combinatorial problems have easily recognizable configurations that represent

solutions. These solutions do not, in general, result in a measurable energy. The energy

term is meaningless. Each configuration results, instead, in a response value measured in

units that are problem specific. If the response value is used in place of the energy, then

the constant of proportionality in Equation 2.4 relates different quantities. This constant is

dropped and the temperature is replaced with a "temperature" function, T.

In physical annealing, the temperature determines the average energy of the metal.

When the system is in equilibrium, the actual energy is near this average energy. As the

temperature is lowered, the average energy is lowered until the metal reaches a ground

state. Simulated Annealing mimicks the physical process. The atoms in the metal are

equivalent to the decision variables in a combinatorial problem. The atomic structure is

equivalent to a configuration of decision variables. The energy is equivalent to the

response value. The temperature is equivalent to a temperature function, a control

parameter that determines an average response value when the combinatorial system is in

equilibrium. As the control parameter is lowered, the average value of the response is

lowered. Eventually, the process settles on a value at or near the global minimum.

Let the objective value for an incumbent's response be given by Yi, and a challenger's

response by Yc. For any given problem in which the objective is to minimize the response,

the probability of accepting a challenger configuration is given by:

12



1 ; AŽO
P(Transition) = where A = yj - y, (2.5)

er; A<O

And in order to maximize the response:

1 ; A>0
P(Transition) = e1; A < O where A = y, - y1 (2.6)

In either case, the temperature T represents a decreasing function with the number of

challenger configurations. Initially, the a priori probability of accepting detrimental moves

is high, and gradually the probability decreases until none of the detrimental moves are

accepted.

Many different functional forms have been proposed for decrementing the

temperature, for controlling the cooling rate (9:7). Ideally, the temperature will maintain

equilibrium and converge towards the optimum within a reasonable number of iterations.

Although theory may guide the selection of E, temperature function, empirical results often

prove more useful when choosing among several alternatives. The average performance of

an algorithm using a given temperature function can be measured empirically once the

constants have been tuned.

2.2. Theoretical Results

The role of theory in heuristic methods is to provide some reassurance that the

method converges to the exact optimum in an infinite limit (1 :vii). Certainly if the method

13



does i.ot converge when taken to an infinite limit, then any candidate obtained in a finite

limit will not be close to the true solution. At present, Simulated Annealing theory

provides this reassurance through convergence proofs for two general classes of cooling

schedules. Simulated Annealing can be formulated in two fundamental ways and the proof

for convergence depends upon which formulation is used.

In either case, however, the theory of Markov processes must be used. Consider the

way in which Simulated Annealing progresses from one incumbent solution to the next.

There is some probability that a given neighbor will be accepted as the incumbent. The

same relationship holds for a Markov Chain. Technically, a Markov chain relates any pair

of outcomes by a conditional probability. The probability of going to state j on the k-th

trial is conditioned on being in state i on the (k-l)-th trial, pijfk-J, k). The cumulative

probability of being in state j on the k-th trial is given by (29: 13):

P,(k)=YPI(k-l)p4(k-l,k) (2.7)
i

This essentially states that the probability of being in state j on the k-th trial depends on a

relationship that involves the likelihood of being in any given state on the previous trial

times the probability of transitioning from that state to the new state in one step. A

Markov chain is homogenous if pij(k-1,k) does not depend on k (the one-step transition

probabilities remain constant). Otherwise the Markov chain is nonhomogeneous (29:12-

13). These are the two classes of cooling schedules for which existing theory proves

convergence. The homogeneous case is generally easier to prove.
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2.2.1. Homogenous Theory

The proof for convergence of Simulated Annealing using a sequence of

homogeneous Markov chains requires enough runs at each temperature setting to ensure

homogeneity. As a consequence of constant PiLj the cumulative probabilities approach

stationary values, ,c j, regardless of the original starting point (27:160):

"= ,N forallj; XTc=l (2.8)
I I

This requires that each Markov chain be irreducible (each configuration is

reachable from every other configuration in random sequences of trials), a requirement

that Metropolis demonstrated for a process in equilibrium (21:1088). As a result of these

conditions, there is a non zero probability of reaching a given configuration from any other

configuration in an infinite number of trials.

The proof, stated in simple terms is this: An infinite sequence of Markov Chains,

each of infinite length, will converge exactly to the optimum (26:326-327). The principal

use of this theorem is not so much to prove that a homogenous algorithm converges to the

exact optimum as it is to qualify the characteristics of the algorithm. In the case of

homogeneous algorithms, a sufficient condition for convergence is to make the length of

each Markov chain extremely long. In practice, simulated annealing cannot reach

equilibrium within a finite length Markov Chain (26:313). The best, then, that

homogenous algorithms can do is to converge as rapidly as possible to the stationary

probability for a fixed temperature. The acceptance function for a minimization problem

with the fastest rate of convergence is given by Equation 2.5. Unfortunately, homogenous

theory does not indicate a way to compromise the infinite length Markov chain within
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practical limits. The length of each chain as well as the length of the sequence of Markov

chains depend on trial and error experience.

2.2.2. Nonhomogeneous Theory.

The nonhomogeneous theory takes a somewhat more practical approach to

qualifying algorithms. The requirement that each Markov chain reach equilibrium at each

temperature is dropped (26:316). Rather than having a stationary transition probability

that is independent of the initial configuration, nonhomogeneous theory simply requires

that the transition probability remains independent of the initial configuration. It has been

proven that an algorithm with the following temperature update function will converge to

the exact optimum in an infinite sequence of trials (26:303)

T(t)= Ylog(t+t 0) (2.9)

where t is the number of the current trial, to is a constant that adjusts the probability of

acceptance (which must be at least 1 to prevent a divide-by-zero error), and y is another

constant which must be tuned for a particular problem instance. Note that each Markov

chain in the sequence is of length one, a single trial. Unfortunately, the sequence

generated by this update function converges much too slowly to be of any practical use

(26:327). Table 2.1 shows how slowly the algorithm converges for the parameter settings

to=1, andA =-1.

Ultimately, it is the actual performance of an algorithm, whether it mimics the

homogeneous or the nonhomogeneous theory, and the artful tuning of that algorithm to a

given problem instance that matters. After all, the objective of this heristic algorithm is

to find an acceptable solution within the limits of computing time.
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Trial T(t) = P(Transition) =

Number 10/log(t+1) e-1/T(t)
100,000 2.00 0.61
200,000 1.89 0.59
300,000 1.83 0.58
400,000 1.78 0.57

TABLE 2.1

2.3. Empirical Results

Johnson et al. evaluated Simulated Annealing formulations and compared their

performance with competing algorithms for several problem classes. Both the

considerations of problem formulation and the results of these analyses provide an

empirical foundation for the Simulated Annealing methodology to follow.

2.3.1. Problem Formulation

Kirkpatrick et al. suggest that there are four components needed to implement a

Simulated Annealing algorithm in practice (18:779):

1) A description of a system's configuration,
2) A generator of trials,
3) A quantitative objective function,
4) A schedule of "temperatures" and "times" over which the process is to be
annealed.

These constitute the problem formulation. Initially, a concise description of the system is

required--which is the same as finding the input variables affecting the process and

determining the relationships among those variables. The description requires both

defining the decision variables and limiting the ranges those variables can assume.
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The set of decision variables also implies a neighborhood structure. Given a

configuration of decision variables, neighboring configurations can be generated by

changing the values of those decision variables within a specified "distance" (Equation

2. 1). For example, the configuration of a satellite may consist of five sensors, three of

type A and two of type B. A neighboring configuration can be generated by using two

sensors of type A, sj, and three sensors of type B, s2. The "distance" would be computed

by:

d(s, ,s2) = 1(the number of objects in sI not in s2 +

the number of objects ins 2 not in s}

-- 2(1 Type A Sensor + I Type B Sensor)
=1

Another configuration, s3, may lie a greater distance away, d(sl,s3 ) = 3. If the

neighborhood size is specified to lie within a distance X = 2, then s2 would be a neighbor

of sj, but s3 would not be a neighbor.

The literature disagrees on the best specification for this neighborhood size. An

empirical study suggests that smaller values perform better than larger values (8:546). A

theoretical study suggests that a dynamic value performs better than a constant value

(initially large but decreasing as time progresses) (33:183). The neighborhood size plays a

large part in defining the total number of neighbors, but it is not the only consideration.

Typically, with a fixed value for X , the number of neighbors increases with problem size.

Clearly, the selection of a neighborhood size for a given problem rests with the problem

solver and is usually determined through trial and error.

Once the neighborhood size has been selected, a method for generating trials from a

random starting configuration can be developed. The original Metropolis procedure used
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a random generator of trials to simulate the randomness of physical processes. The

generator required each decision variable to be perturbed some random distance from its

incumbent state but within the limiting distance of the neighborhood (21:1088). The

problem with randomly generating trials is that the same configuration of decision

variables may be tried several times before exhausting all possible configurations within

the same neighborhood--thereby wasting computing time. Why retry a configuration once

it has already been rejected while there are still configurations which have yet to be tried?

The theory supporting homogeneous algorithms requires that each Markov chain be

irreducible and aperiodic. This means that the one-step transition probabilities must

remain constant at each temperature setting. In order to maintain this requirement, the

algorithm must select neighbors at random.

Fortunately, nonhomogeneous algorithms do not need to meet this strict

requirement because the supporting theory does not require the one-step probabilities to

remain constant. These algorithms can take advantage of more efficient trial generators

(28:396). Imagine that you are in a labyrinth and you must decide how to proceed at each

intersection--you prejudice your tvns so that you spend less time retracing your steps.

Likewise, more efficient trial generators bias the search pattern within a neighborhood to

minimize computer time wasted on repeated configurations. Johnson et al. found that by

using a structured trial generator they were able to improve the solutions, "almost as much

as one would obtain by doubling the running time and staying with the standard method

(15:885)." The nature of the bias can affect the performance of the algorithm for a given

problem and must be determined by experience and intuition.

Once the trial generator has been established, a method for calculating the value of a

configuration must be devised. The form of this function depends on the measurable

effects from the system, the availability of actual data, and the objectives to be achieved.
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There may be various output measures and several objectives that need to be addressed.

The response function can combine these factors by means of a weighted sum. The sign

and coefficient of a factor would reflect its relative importance in the overall goal.

After calculating a number representing the true value of a given configuration, the

algorithm can proceed with its fundamental comparison of the incumbent and challenger

configurations. The acceptance function makes this comparison by determining the

overall likelihood of accepting a challenger at the given temperature with a given response

value difference. Recall that the temperature determines an equilibrium distribution of

response values. A sample taken from a uniform [0, 11 distribution represents the

likelihood of a specific challenger, a random draw from the equilibrium distribution. If the

sampled value is less than the overall likelihood, then the challenger is accepted.

Otherwise it is rejected and the incumbent remains the same. The temperature function is

defined as a decreasing function cf t and bounded so that the algorithm terminates within a

finite number of trials.

All four of these inter-related components work together to specify a Simulated

Annealing algorithm: a configuration of decision variables that describe the system; a

generator of trials that permutes the incumbent configuration; a quantitative objective

function that measures the system's response; and an annealing schedule to search the

configuration space. Figure 2.1 shows these relationships.
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Se�sct a Starling COMPONENT 1: A SWtem Conf�urolian

Conf�utal1on

Select a nei�borlng COMPONENT 2: A Genejator of Trials

COMPONENT 3. A Quonhltailve

Ob�ecNe FunCilOil

COMPONENT 4: An Annealing Schedule

FIGURE 2.1: PROBLEM FORMULATION RELATIONSHIPS
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2.3.2. Analyses

Johnson et al. formulated Simulated Annealing algorithms for several problem

classes including Graph Partitioning. Graph Partitioning is NP-complete -- the computing

time required for an exact optimum increases exponentially as the problem size increases

linearly. Reviewing this formulation provides insight regarding the actual specification of

the Simulated Annealing Algorithm. Before discussing the problem in detail, some graph

theory nomenclature must be reviewed:

DEFINITION 2.5 (14:7): Graph G
A pair of sets (V,E) where V is nonempty, and E is a (possibly empty) set of
unordered pairs of elements of V. At most one edge may join two vertices.

DEFINITION 2.6 (14:7): Vertices V(G)
The elements v e V. Let p denote the number of elements in V.

DEFINITION 2.7 (14:7): Edges E(G)
The elements e = E. Let q denote the number of elements in E.

DEFINITION 2.8 (14:8): Adjacent/Neighbor
If the vertices vI and v2 are incident with the same edge e, then v1 and v2 are
adjacent, or neighbor each other.

DEFINITION 2.9 (14:8): Incident
If a vertex v] is an endpoint of an edge e, then vI is incident with e.

Graphically:

e

v1=1 v2 =2

FIGURE 2.2: A GRAPH
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The Graph-Partitioning problem can be stated as follows: Given a Graph G,

partition the vertices of G into two sets of equal size. The objective of the partition is to

minimize the number of edges in G that have vertices in both of these sets. The response

function, y, is simply the number of edges with this property. Figure 2.3 shows one

instance of the problem:

G

P1 P2

y12

FIGURE 2.3: GRAPH PARTITIONING

The problem formulation used by Johnson et al. is just one way to apply Simulated

Annealing and may not be the best implementation for the Graph Partitioning problem.

Nevertheless, it illustrates the relationships among the four components of problem

formulation. Their formulation is as follows:

1) System Configuration: The decision variables are the assignments of vertices

vI,...,Vp to partitions P1 and P2 . Decision variables can be assigned values of 1 or 2,

representing PI and P2 respectively. The neighborhood size is one. This means that a

neighbor of the incumbent configuration can be obtained by simply changing the

assignment of a single vertex. This scheme occasionally unbalances the partitions so that

one set contains more vertices than the other. The algorithm accounts for the imbalance

through a penalty function. The penalty function adds to the original response function in
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order to bias challenger configurations. When the partition is out of balance, the penalty

function forces alternatives towards equal partitions (15:867,870).

2) Generator of trials: Select a vertex at random and change its current assignment

(15:870).

3) A quantitative objective function: The number of edges with vertices in both sets

P 1 and P2 plus an imbalance factor times the number of vertices out of balance (15:871):

y(s) =1{E = {vl,v 2 }:v 1 =I A v2 = 2)1+ O.01{v E PI) -{v Ive P21 (2.10)

4) Schedule: Establish an initial "temperature" so that 40% of less optimal trials are

accepted, a value determined through experimentation. Set the length of each Markov

chain to sixteen times the number of neighbors within a neighborhood size of one. At the

end of each chain, reduce the temperature by five percent. Terminate the algorithm when

five concurrent Markov chains accept fewer than 2% of the trials. All of these tuning

parameters were selected through a trial and error process and these values were deemed

best (15:872). Whether or not this is a good algorithm, in the sense of definition 2.5,

cannot be decided for any implementation of Simulated Annealing (15:869).

Johnson et al. compared the performance of this algorithm against the performance

of Local Search and the Kemighan-Lin algorithm, the recognized benchmark for the

Graph Partitioning problem (15:870). They performed 1000 runs of each of these

algorithms on random graphs formed with 500 vertices and averaging 1196 edges. The

results were:
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Algorithm Average Objective Average CPU Time
0 000 Cases Each) Value (sec)

Local Search 280 1.0
Kemighan-Lin 235 3.7

Simulated Annealing 215 360.0

TABLE 2.2

Are these competing algorithms? Clearly if the computing time is so limited that

Simulated Annealing cannot complete a single case, then it cannot compete with the other

two algorithms. On the other hand, if there is enough time available to run one case

through Simulated Annealing, there is enough time to run 360 cases of Local Search or

100 cases of Kernighan-Lin. To compare the algorithms in the latter case, Johnson et al.

equalized the running time over the algorithms given five cases of Simulated Annealing.

"Their results showed that both Simulated Annealing and Kernighan-Lin dominate Local

Search and that Simulated Annealing and Kemighan-Lin compete with each other.

This study illustrated the general approach to formulating the Simulated Annealing

algorithm, highlighting the fact that any implementation is highly dependent on the

judgment of the problem solver. It also validated the comparison of two algorithms by

adjusting the computing time first. In any realistic problem, the available computing time

will dictate which algorithms to implement. Once the algorithms have been adjusted to the

time constraint, then the solution quality can be measured and the best competing

algorithms determined. This approach is be used for this thesis.

How should Simulated Annealing deal with the effects of a stochastic response?

The following section addresses these considerations.
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2.4. Modeling a Random Process

If a system is stochastic, then the model should respond like a random variable

rather than like a deterministic function. In this case, the "value" of a given configuration

of decision variables cannot be measured with a function, but must be estimated with a

random sample. Two fundamental concepts must be examined to determine how a

problem solver can 1) model a random process, and 2) compare two configurations using

random samples of the system's response.

Generally, deterministic models represent processes on a gross scale while stochastic

models represent processes on a small scale (21:14). For example, a set of differential

equations can be used to model analytically the mixing of two fluids. Although the model

describes the general behavior of the fluids, it would not describe the minute behavior--the

Brownian motion in the process. A simulation model could account for the Brownian

motion and result in a more detailed model (21:11).

Often the goal of a stochastic model is to capture the minute behavior of a process.

The problem solver may need to employ a simulation model to do this. Simulation,

however, requires much more computing time to solve a given problem than a

conventional technique would require (12:53). The reason for the increase in computing

time is this: simulation recreates the main elements of a process within the controlled

environment of a computer and uses pseudo-random representations for the truly random

factors (21:12). This means that a single run may not adequately represent the

configuration. The more a process varies, the more inadequate a single run becomes. To

overcome this limitation, a random sample based on batched observations can be used
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(25:724-725). Each function evaluation in the deterministic case corresponds to batched

observations in the stochastic case.

Within the system there may be any number of random factors. Data must be

collected for each factor and a probability distribution fitted to the observations. A

uniform pseudo-random number seeded into an inverse form of a given distribution

generates one "observation" of that random factor (25:708). Matching probability

distributions to random factors, only one part of validation, requires a great deal of work

to ensure that the overall process is accurately modeled.

Assuming that a suitable simulation model has been developed and validated, an

assumption that this thesis makes for the problems it considers, then the problem of

optimizing the response must be addressed. The most straightforward, although naive

approach, would be to substitute an estimate of the response for the constant response in

an optimization technique designed for deterministic models (32:595). Jorge Haddock

and John Mittenthal successfully performed one such study using Simulated Annealing and

a steady-state mean from a simulation for each estimate (13:389). The problem with using

this naive approach is that of picking an adequate sample size to ensure that the estimate is

meaningful. The need to take a random sample rather than a single outcome implies that

the computing time increases with the size of the sample (4:199). Therefore, the sample

size must be large enough to provide a meaningful estimate of the response but small

enough to keep the algorithm within computing limits.

The sample size depends naturally enough on the process itself. If the process

varies a great deal, a larger sample would be needed. If the process did not vary, it would

be constant -- requiring only one outcome. Recent Simulated Annealing theory states that

a sufficient control on the variability of the response requires that the variance of the
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estimate go to zero faster than the temperature function (26:329). The estimate's variance

is given by (17:2-37):

Where m is the number of observations in the estimate, y, is the value of each observation,

and y is the mean of the observations. Clearly, one way to decrease the variance of an

estimate is to take more observations. The number of observations must approach infinity

as the variance approaches zero.

As with previous theoretical results, this result may not give any practical guidance

except to provide some reassurance that Simulated Annealing is tolerant of some "noise"

in the estimate. In practice, the available amount of time will dictate how small the

variance can be made. Furthermore, there is a trade-off between the accuracy of each

estimate and the number of trials in each annealing run. A trade-off that can only be

resolved by trial and error. The usefulness of Simulated Annealing for stochastic models

must be shown empirically and through practical application.

2.5. Summary.

This literature review provides the foundation for a Simulated Annealing method

that is applied to three simulation models. The empirical studies reviewed show how to

formulate a Simulated Annealing algorithm, giving the insight needed to devise alternative

algorithms. The experimental results substantiate which alternative algorithms dominate

and which ones compete with each other. The comparison techniques reviewed provide
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the measurement needed: the average performance as measured by solution quality and

efficiency. Existing Simulated Annealing theory gives the reassurance that such

algorithms converge to the exact optimum, at least when the problems are deterministic.

As yet, there has been little research into the adaptation of Simulated Annealing for

optimizing simulation models. What little that does exist from the fields of simulation and

Simulated Annealing theory suggests nothing to prevent such an adaptation. The purpose

of this thesis is to explore alternative ways to make the adaptation effective.
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fiL Mat hodin

The methodology consists of four fundamental parts: the simulation model, the

Simulated Annealing algorithm, the alternative acceptance tests, and the comparison

between those alternatives. The simulation model captures the key elements in the process

to be optimized so that trial configurations can be evaluated. The Simulated Annealing

algorithm incorporates the simulation model into a common programming structure so

that the decision variables can be optimized. This common structure not only permits

alternative acceptance tests to be tested, but also enables Local Search to be implemented.

The alternative acceptance tests explore the behavior of differing probability distribution

functions. This behavior affects the solution quality and computing efficiency of the

algorithm. The performance of these alternatives compared with the performance of Local

Search provides some justification for using Simulated Annealing. Each of these parts is

presented in more detail.

3.1. The Simulation model

The simulation model is at the heart of the methodology because it represents the

process itself. Although a simulation model can be stated in general terms, me Simulated

Annealing algorithm depends on the specific simulation tool used by the problem solver.

The fist step is to select a simulation language that can be tailored for optimization -- such

as SLAM 11 (25:759). The next step is to develop each simulation model using SLAM 11

in such a way that the input variables can be modified between simulation runs. The
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SLAM language uses FORTRAN subroutines external to the simulation model to control

these modifications. The subroutines are called user inserts.

SLAM II scenarios consist of four pieces: the scenario definition, the control

statements, the network model, and the user inserts. The scenario definition simply links

all of these pieces together. The control statements specify certain initialization conditions

and executive constraints. The network model describes the process in terms of the input

variables and generates the response value. The appendices contain the details for each of

the simulation models presented.

3.1.1. The Timing of Traffic Lights.

The first of the three simulation models, the timing of traffic lights, was selected for

two reasons: 1) it is simple, and 2) it has already been used for a case study in simulation

optimization. The model is simple because it requires only two decision variables, the

"green" times for each traffic light. The objective vwdue is the average time a car must wait

at either traffic light. The approach used in the SLAM study conducted by Pegden and

Gately gives additional background needed to develop the Simulated Annealing algorithm

(24:18).

The traffic light problem originated in A. Alan Pritsker's text on SLAM (24:22).

The system modeled is a two lane road which is undergoing repairs along a 500 meter

stretch, shown in Figure 3. 1. Traffic must be regulated along this stretch since only one

Traffic Light
2

Traffic Light

STAGE 2

FIGURE 3.1: REGULATING TRAFFIC
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lane is available. In order to regulate traffic, two traffic lights have been placed so that

one is at either end of this one-lane stretch of road. A cycle must be designed for these

lights to minimize the average time a car must wait before proceeding across the stretch.

Each cycle consists of four stages: 1) both lights are red, 2) light 1 is green while light 2 is

red, 3) both lights are red, and 4) light 1 is red while light 2 is green. The timing for

stages (1) and (3) are fixed at 55 seconds while the timing for stages (2) and (4) can vary.

3.1.2. The Allocation of Machines in a Job-Shop -

Open Queuing Network.

The second simulation model was selected because it represented a complex

problem and implemented easily. The complexity comes from the size of the problem: it

requires six decision variables. These variables represent the number of machines available

at each of six machine stations. The model was easy to implement because of the similarity

between these stations. The objective value is the average total time that a part must wait

at the various machine stations while being processed. The objective is to minimize this

value. The fewer machines there are available at each station, the longer a part must wait

on average. The total number of machines available to all stations is constrained to less

than 25. The problem is to optimally allocate these machines to the six machine stations

illustrated in Figure 3.2.

FIGURE 3.2 OPEN QUEUING NETWORK
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The figure shows the flow of parts through each of the machine stations. A part

enters the system at station 1 and then proceeds to either station 2 or station 3. From

station 2 (3), the part goes on to station 4 (5) or, if it needs more work, it returns to

station 1. The part proceeds to station 6 or returns to statiojn 2 (3) for additional work

after completing the activity at station 4 (5). After the part completes the activity at

station 6 it leaves the system. Once the part leaves the system, the total time spent waiting

for service can be calculated.

3.1.3. The Allocation of Machines in a Job-Shop -

Closed Queuing Network.

The third simulation model is no more than a variation on the second model.

Instead of allowing the parts to enter and exit the system freely, the model contains a fixed

number of parts that cycle through the stations. Figure 3.3 shows the altered flow of

parts.

FIGURE 3.3 CLOSED QUEUING NETWORK

The model contains 30 parts that begin processing at station 1 and finish at station 6,

where the waiting time for one cycle is measured. The part proceeds through the

machines stations as before. The objective value is the total waiting time accrued by a part

from station 1 through station 6. After completing the activity at station 6, the waiting

time for a given part is reset to zero and it re-enters the system at station 1.
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3.2. The Simulated Annealing Algorithm

The Simulated Annealing algorithm optimizes the decision variables for a given

simulation model. Its structure provides a common platform for testing alternative

acceptance functions. The generic framework built into the network models enables the

user inserts to be developed as modules. The global variables can be passed back and

forth between the user inserts through the SLAM executive. The algorithm itself consists

of four such moduk.,. the executive module, the initialization module, the network

module, and the acceptance module. Figure 3.7 shows the program's flow through each of

these.

The executive module consists of the SLAM executive and its extensions. The

SLAM executive is a FORTRAN based program that defines a common block of variable

names as well as user-callable functions and subroutines.(25:389) The structure of the

MAIN program allows the user to specify input conditions, network control, and output

processing through external subroutines.

The initialization module consists of the INTLC subroutine and its subordinates.

"INTLC" is the name reserved by the SLAM executive for the initialization of a

simulation. Before executing a network model, the SLAM executive carries out the

instructions in this user-written subroutine. For the Simulated Annealing algorithm, these

instructions perform two main functions: (1) to determine a starting configuration by

calling the FIRST subroutine, and (2) to select a neighboring configuration by calling the

NEXT subroutine. The FIRST subroutine selects a starting configuration using a

uniform[O,I] random number from the RAN subroutine to permute a base configuration.
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The NEXT subroutine may or may not use a random number from the RAN subroutine,

depending on the permutation scheme used. A fixed permutation scheme is used on the

first and third simulation models and a random permutation scheme is used on the second

model. The INTLC subroutine cycles through the alternative acceptance tests. For each

acceptance test, INTLC calls the FIRST subroutine to determine a starting configuration

and successively calls the NEXT subroutine to try neighboring configurations. INTLC

reinitializes the random number seeds used by the RAN subroutine between successive

tests. This ensures that all of the acceptance tests use the same set of starting

configurations. This reduces the noise between alternative acceptance tests so that true

performance differences can predominate.

The network module consists of the network model and the EVENT subroutine

with its subordinate, the TEST subroutine. The network model generates an estimate of

the response value for a given configuration. The EVENT subroutine is used to collect

observations on the performance measure using many of the techniques reported by

Pegden and Gately: collecting observations after the simulation reaches steady-state,

batching observations to minimize variance, and varying batch sizes to reduce computer

time (24:19-22). Existing studies referenced by Pegden, Gately, and Pritsker lend

credibility to the values used to implement these techniques (24:21; 25:735).

The network model calls the EVENT subroutine when an entity passes through an

EVENT node (i.e., when a car passes through a green light or when a part completes

processing). As in Pegden's study, the EVENT subroutine is designed to collect

observations only after the f'rst 500 seconds in order to achieve steady-state. Fifty

samples are collected for determining each batch mean. Ten batch means are collected

before the estimated change in response is determined. After the first ten batch means are
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collected, the probability of accepting the challenger is calculated using the TEST

subroutine. This is a preliminary test used to determine the need for collecting more batch

means. If the probability of acceptance obtained from the TEST subroutine falls below a

predetermined threshold probability, then EVENT stops the trial. Otherwise the network

model continues to generate more observations until a total of 30 batch means are

collected or the probability of acceptance falls below the threshold. The threshold

probability is 20% for the Timing of Traffic Lights and Closed Queuing Network models

and 100% for the Open Queuing model. The threshold trades some efficiency (by

requiring more batches) for more accuracy in the estimates of challenger responses with

acceptance probabilities above the threshold. Therefore, the algorithm used on the Open

Queuing model is more efficient but less accurate than the algorithms used on the other

two models. The more accurate algorithm would have been used on the Open Queuing

model, but the lack of time made this impossible. By varying the number of batch means

used to estimate a challenger's response, the algorithm uses less time estimating unlikely

moves. This makes the algorithm generally more efficient. Since the actual efficiency

depends on the probability returned to EVENT from TEST, there may be a difference in

efficiency among the alternative acceptance tests.

The acceptance module consists of the OTPUT subroutine and its subordinates.

"OTPUT" is a reserved name like INTLC and EVENT. Once a simulation run completes,

SLAM automatically executes OTPUT's instructions. The Simulated Annealing algorithm

uses this link both to compare estimated responses and to adjust the annealing schedule.

OTPUT compares the estimated response by using the RAN and TEST subroutines and

adjusts the annealing schedule by updating the temperature and other control parameters.

The RAN subroutine supplies a uniform[0,1] random number and the TEST subroutine

determines the probability of accepting the challenger. These values are used in the final
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acceptance test. An acceptance probability equal to 1 indicates that the challenger is more

desirable than the incumbent and must be accepted. Otherwise, the challenger is accepted

only when the random number drawn from RAN is less than the probability calculated by

TEST. If the challenger is accepted, then the PUT subroutine records the configuration

and response statistics.

The PUT subroutine not only maintains these values for the incumbent, but also for

the best-to-date. The incumbent may have a less optimal response value than the best

value obtained from all the previous trials. The best-to-date records the most optimal

response encountered. Once each annealing run completes, the OUT subroutine writes

the performance statistics, including the CPU time used, and the decision variable settings

for the best-to-date to an output file. The TIME subroutine determines the CPU time

used. The statistics recorded in the output file are used to compute the average solution

quality and the average efficiency. These performance measures are used to compare

Local Search and Simulated Annealing with seven different acceptance tests.

3.3. The Acceptance Tests

Aside from validating the general methodology of Simulated Annealing, the purpose

of this thesis is to investigate alternative acceptance functions. The first step in

formulating these variations is to code the algorithm crudely and observe the annealing

behavior. The next step is to characterize both the observed and the desired behavior.

The final step is to devise alternative acceptance tests to achieve the desired behavior.

Each of these steps are discussed in more detail.
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3.3.1. Annealing Behavior Observed.

The crude behavior of Simulated Annealing is observed by coding a selected

technique for a given problem and tracking the value of the incumbent's response over the

annealing period. Specifically, the annealing algorithm designed by Johnson et al. is used

to optimize the timing of traffic lights. Figure 3.5 shows the result of one such annealing

run.1

The crude annealing code used in Figure 3.5 implements an homogeneous algorithm

that lowers the temperature gradually in stages. A lower temperature causes a decrease in

the probability of accepting a fixed change in the response. Since the value for a good

starting temperature is unknown, the value is set arbitrarily to one. Using the same

approach that Johnson's group used, the temperature is reduced every ten trials and the

annealing run is stopped when the ratio of acceptances to rejections is less than a threshold

value. While Figure 3.5 shows an outcome of one annealing run using this algorithm, it

does not illustrate how the probability of acceptance changes over time.

It seems that a more systematic, logical approach for characterizing the acceptance

test is needed. One approach is to plot the equilibrium probability used to determine the

likelihood of acceptance. In order to picture how the acceptance probability decreases

over time, the trial number is plotted against the corresponding probability of acceptance

for several response value differences. The plot is termed a convergence plot since the

acceptance probability tends towards zero as time progresses (as the trials number gets

larger). Figure 3.6 shows the convergence plot for the algorithm used in Figure 3.5.

'The "Response Value" used was not the average waiting
time, but a value contrived to account for variance.
Although this response measure was not adopted later, the
results in Figure 3.8 illustrate the characteristic
annealing behavior.
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3.3.2. Annealing Behavior Desired.

Does the annealing behavior shown in Figure 3.6 coincide with the desired annealing

behavior? The Simulated Annealing algorithm used by Johnson's group is designed for

deterministic problems. The algorithm uses thousands of trial configurations and

convergence upon the optimum occurs very slowly. An acceptance plot for an algorithm

of this sort is shown in Figure 3.7. Note that the probability of acceptance is high during

the early trials and approaches zero in the latter trials. The convergence plot shown in

Figure 3.6 is does not appear to behave in quite the same way. The problem lies in the

fact that only 100 trials are shown. Why? The amount of CPU time available to find a

good solution limits the number of trials that can be made. With simulation models, the

time used in estimating each trial's response reduces the total number of trials.
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The convergence plot must be tailored to mitigate the limitations of an annealing run

consisting of, at most, hundreds of trials. The first consideration is to choose between

homogeneous and nonhomogeneous implementations. The next consideration is to

modify the chosen implementation in two ways: to accept larger changes initially and to

converge on a solution more quickly.

Theory does not indicate a preference between homogeneous and nonhomogeneous

algorithms. Nonhomogeneous algorithms, however, yield a practical advantages. Given

short annealing runs, the homogeneous algorithm would require large drops in the

acceptance probabilities between successive segments. Such large drops invalidate the

assumption of gradual cooling. The nonhomogeneous algorithm generates a smoother

plot since the temperature is adjusted at each trial. This smoothness avoids the large

discontinuities between successive segments. Therefore, a nonhomogeneous

implementation appears to be the better choice when the annealing run is time limited.

Modifications to a nonhomogeneous algorithm can allow larger changes in the

response value to be accepted initially yet converge to a solution more quickly. These

modifications constitute a compromise between pure Local Search and pure Simulated

Annealing. The resulting search is able to escape some poor local optima without

requiring too many trials. Both of these aims are related. In order to ensure the search

can escape poor local optima, some way of relating the probability of acceptance to the

model's specific behavior must be found. This modification is termed tuning. The

acceptance probability could not be high initially and low towards the end of the annealing

run unless the probability converges to zero in a finite number of trials. This modification

is termed forced convergence.
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3.3.2.1. Tuning.

Tuning relates the behavior of the model to the probability of acceptance so that the

search can escape some poor local optima while not accepting too many poor moves.

Tuning lies more in the domRin of art than of pure objectivity. Traditionally, the selection

of a method for the tuning results from trial and error, experience, and intuition (15:869).

The tuning method adopted in this research relates the variance in the estimate to a certain

probability for a given change in the response at a set time during the annealing run. The

tuning method is explained by examining the general form of the acceptance test and

showing how the relationship is determined.

Equation 3.1 shows the general form of the acceptance test, where a represents the

tuning parameter and c(t) is a coefficient function that may be used to force convergence.

1 ;A•_O
P(At) = C(t)eAfr(,); A> (3.1)

The value for a establishes the desired relationship. The given change in response (A) is

proportional to the variance of the estimate (cr). The certain probability of acceptance

occurs when the trial (Q) reaches the half-way point during the annealing run (which

consists of n trials). The desired relationship is given by:

P(A,t) = 0.05; A = a/3; and t=n/2 (3.2)

Applying these values to Equation 3.1 gives the value for a as:

a =-(o /3)/[ln(O.05/c(n/2))*T(n/2)] (3.3)
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Although this tuning method seems arbitrary, it achieves good solution quality in the

first two models studied. It allows all of the acceptance functions to be tuned in the same

way so that differences in performance are due more to differences in the functions

themselves than to differences in the tuning method used. The tuning method adopted

allows the probability of acceptance to be related to the accuracy of the response estimate.

Each response is estimated using thirty batch means. The variance of the estimate (Y) is

the variance among those batch means. In practice, o is estimated from the variances ot

several response estimates. Each response is the mean of the thirty batch means. The

standard deviation of the mearn (o(y)) is given by (17:5-12):

a(y)=a/3-56 (3.4)

This implies that the change in response used for tuning (Y/3) measures the difference

between means that are apart by 1.826 standard deviations of the mean. In this way, the

tuning method relates the probability of acceptance to the resolution of the responses.

3.3.2.2. Forced Convergence.

Forced convergence means that the temperature converges to zero, not in an infinite

number of trials, but in a finite number of trials. This yields another advantage. If each

trial executes within one minute and the algorithr •r: rminates after 100 trials, then at most

100 minutes of computing time will be used. Conversely, if only 70 minutes are available,

then the algorithm can be forced to terminate after 70 trials.

The modification can be made in one of two ways: using the temperature function

(T(t)) to force convergence; or using the coefficient function (c(t)) to force convergence.

Examining the general form of the acceptance test shows how either modification can be

made:
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1 ;AgO
P(A,t) = c(t)e_ o ; A >0 (3.5)

The first of these methods use the temperature function to force the probability of

acceptance to zero in a fixed number of trials (n). This is accomplished by letting the

temperature function range between 1 and 0, resulting in:

I A:<0 1;A5 0P(A, 1) =e-'V;A >0 P(A, n)-=(0, A >0 (3.6)

Note that once the trial number reaches n, the algorithm reverts to Local Search. This

modification achieves a compromise between pure Simulated Annealing and pure Local

Search. The second method achieves the same compromise by letting the coefficient

function range between 1 and 0 as the 'iials progress from 1 to n. The resulting algorithm

behaves similarly, except that the temperature function is unaffected:

1 A<0 1;A<50
P )," P(A, n) (3.7)P(AI) = e-'ArcTl); A >0 0;, A > 0(3

This allows a temperature function traditionally used on deterministic problems to be used

on simulation models.

3.3.3. Alternative Acceptance Tests Devised.

Several alternatives are developed based on these modifications. The tuning method

of Equation 3.3 is fixed for all of the alternatives. Two of the alternatives use traditional

methods without forced convergence. Three alternatives use variations on the

temperature function to force convergence. Two alternatives use variations on the

coefficient function to force convergence. Each of these alternatives is presented.
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3.3.3.1. Geometric Temperature.

The first alternative uses a traditional temperature function without forced

convergence. It is termed geometric because each successive temperature is a proportion

of the previous temperature (9:211). The acceptance test can be given by:

1 ; A_< rO

p(A,)e_= I (ITM ;A>O; T(t)= r'; O<r<l (3.8)

Where r is the proportion of the temperature retained from one trial to the next. Figure

3.9 shows the convergence plot for n = 100, and r = 0.995. It also shows effect of tuning

using a tuning plot. The tuning plot shows the acceptance probability as a function of

the change in response value (A) for several trial numbers.

This alternative causes the acceptance probability to converge on zero very slowly.

The rate of convergence is not keyed to a predetermined run length (n). It depends solely

on the tuning parameter ac to ensure that the algorithm converges on a solution in a

reasonable amount of time.
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33.3.2. Linear Temperature.

This alternative forces convergence using the temperature function. This causes the

acceptance function to converge more quickly and can be tailored to a predetermined run

length. The temperature is reduced at a constant rate going from 1 to 0 in n trials:

1 ;AO n+1-t
P(At)== 1 A>; T(t)=:nf (3.9)

eIuf; A > 0 n

Figure 3.9 shows the resulting convergence plot and Figure 3.10 the tuning plot.
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Note how this tuning plot reveals a wider separation among the probability curves at

different trial numbers than the previous tuning plot. This difference in shape may

correspond to a difference in performance when the annealing run is time-limited.

3.3.3.3. Adaptive Temperature.

This alternative differs from Linear Temperature by making use of the variance in

the response. The cooling rate captures [he system's variability by pooling the sample

variance from the challenger and incumbent responses; the concept of a pooled variance is

derived from the same method used by a two sample t-test (17:6-16):

1 ;A<O , n+l-t ' (m,-l)a''+(m'--)a',-. (3.10)
P(A,t) = e_,aT(,);A>O'; T(0 n m, + ;__ - 2(3.10)
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Where a' is the pooled standard deviation, a'• is the sample variance for the challenger,

a -I is the sample variance for the incumbent, mt is the number of batches used to

estimate the challenger's response, and mt.1 is the number of batches used to estimate the

incumbent's response. Figure 3.11 shows the result of three different challenger variances

in the convergence plot. The plot was generated using a fixed change in the response A

= a /6, and a fixed standard deviation in the incumbent's response &',-1 = a.
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FIGURE 3.11 ADAPTIVE TEMPERATURE CONVERGENCE PLOT

The significance of this alternative lies in the effect that a change in the challenger's

variance has on the probability of acceptance. It turns out that a[Adaptive Temperature]

= a[Linear Temperature]/O. If the response variance does not change between trials,

then this alternative is equivalent to Linear Temperature (a' = a, so that aea[Adaptive

Temperature] = a[Linear Temperature])- If the response variance does change, then this

alternative will react by accepting trials with larger variance more readily and rejecting

trials with smaller variance more frequently. This reflects the degree of certainty implied
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by a smaller variance. Statistically, the smaller variance implies more certainty for the

same difference in response value than a large variance. Recall that the tuning method

uses an estimate for a. This alternative modifies the acceptance probability to account for

variations in a among the trials.

3.3.3.4. Elliptic Temperature.

This alternative uses a temperature function that changes little initially and

accelerates the rate of change towards the end of the run. The functional form is that of

an ellipse. In this case, the independent variable (t) and the dependent variable (T(t)) are

always non-negative:

1 ; A <0 T~)=O (t- 1)

P(At) T(t)= ,1 (3.11)
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Note that this alternative preserves the shape of the Geometric Temperature plots more

than Linear Temperature and Adaptive Temperature. It constitutes a compromise

between the Geometric and Linear Temperature techniques and will help to show which

dominates.

3.3.3.5. Logarithmic Temperature.

This alternative uses another traditional temperature function without forced

convergence. It provides the basis for the next two alternatives that use the logarithmic

temperature function in conjunction with a coefficient function to force convergence. It

also provides a basis for measuring the performance differences that result. The

logarithmic temperature acceptance test is given by:

1 ;A<_O
P(A't) =e-A();>0; T(t) =I /In (t + 5) (3.12)
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Note that a significant difference between previous cooling rates and the logarithmic

cooling rate lies in the probabilities of the first few trials. Probabilities based on the

logarithmic function decrease rapidly in the first few trials but change gradually in later

trials. As with the Geometric Temperature, the tuning plot shows little change in the

acceptance probabilities over much of the annealing run.

3.3.3.6. Linear Coefficient.

This alternative uses a coefficient function that pre-multiplies the acceptance

probability obtained from a logarithmic temperature function. Recall that the logarithmic

temperature ensures quasi-equilibrium between trials. The intent of the coefficient is to

keep this seeming equilibrium intact, but also to scale the resulting probability according

to the trial number. This alternative forces convergence by using a linearly decreasing

function for the coefficient:

1 ;A_<0 n-c
P(At) = , A:0; T(t)=-/ln(t+l); c(t)= -n (3.13)

C(t)e-'&1T')'; A > 0 n

This acceptance test implies that, as the trials progress, the scaling factor reduces

each probability at a constant rate. As with other alternatives, a different value for the

tuning parameter results from the difference in the form of the acceptance function. The

effect of this difference is to start with higher acceptance probabilities initially and reduce

them more quickly near the end of the annealing run. Figure 3.15 shows the resulting

plots. Note that the tuning plot shows a dramatic difference compared with previous

alternatives. The acceptance probabilities for small adverse changes in the response are

much less. Therefore, this alternative accepts fewer trials with small adverse changes in

the response.
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3.3.3.7. Elliptic Coefficient.

This alternative uses a coefficient function to pre-multiply the acceptance

probability. The coefficient function describes an ellipse, as before. The elliptically

decreasing function preserves more of the Logarithmic Temperature's shape than the

Linear Coefficient:

) I •A< 5 T(t)=I/ln(t+l); c(t)= "ýl- 2 (3.14)
c(t)e_•/a€,); A > n

This alternative also has the effect of reducing the acceptance probabilities of small

adverse changes in the response. As seen in Figure 3.17, the effect is less pronounced

than with Linear Coefficient.

Covonce Plot1

0.9

0.8

0.7 - Tuning Point

0.6

0.5

-- 0.4

20.3

0.2
A =a/6

0.1

0

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Trial Number

FIGURE 3.16 ELLIPTIC COEFFICIENT CONVERGENCE PLOT

56



Tuning Pot

1.

0.9

0.7

•OA Tuningoin

0,5

IOA tz2

0.32

0.1

a/12 0/6 o/4 o/3
Change In Rteponm

FIGURE 3.17 ELLIPTIC COEFFICIENT TUNING PLOT

The differing characteristics apparent in the convergence and tuning plots may result

in differing performance in solution quality and efficiency. Those characteristics that result

in better performance may support the development of superior acceptance functions.
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3.4. The Comparisons.

As discussed in Section 2.1, the comparison of heuristic algorithms is made for a

given problem based on their average performance. The performance of the alternative

Simulated Annealing algorithms is measured using the average solution quality obtained

over two fixed anneJing run lengths. The two best candidates for each model are chosen

and their performance is compared against Local Search. This two-stage comparison is

explained in greater detail.

3.4.1. The Simulated Annealing Alternatives Compared.

The seven alternative acceptance functions are compared for the first and third

models and a subset of the seven are compared for the second model. In every case, the

solutions obtained from each alternative over a set of (m) starting locations is used to

compute the average solution quality. The set of starting locations is the same for each

alternative.

The average solution quality for a given alternative tuned for a set run length is

calculated as follows. First, a base solution is determined (yb). When the value for the

global optimum is known, it is used for the base value. When the global optimum is not

known, the best estimate is used. Next, the performance of each solution (yi) is measured

by taking its difference from the base value:
ai =iYb- y, 1 (3.15)

These values are used to calculate a measure of performance that relates the differences to

the base value, This measure of performance is called the mean percent difference, given

by:
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m

MPD = (100/m)Y, / Yb (3.16)
i-1

This relative measure provides an intuitive feel for an algorithm's general performance

(21:47). The measure converts the raw difference in value to a more user-friendly

percentage. It seems more reasonable to say that an algorithm has an average 5%

difference than to simply state that the average difference is 183 (21:47). For this reason

the MPD will be used to measure solution quality among the alternative acceptance

functions.

3.4.2. The Best Alternatives Chosen.

Once the MPD for every alternative is measured, the two best alternatives can be

chosen. This is not so straightforward as it seems. Each alternative is tested at two

different annealing run lengths: m1 annealing runs at nj = 100 trials, and m2 runs at n2=

200 trials. The longer runs provide better solutions when compared head-to-head.

However, the algorithm could be run twice at 100 trials for every run at 200 trials.

Therefore, unless the solution quality improves dramatically at the longer run length, the

shorter run is preferable. The two best alternatives at the selected annealing run length

are chosen to compare against Local Search.

3.4.3. Local Search Compared.

Unlike the first comparison, the comparison of the chosen Simulated Annealing

alternatives against Local Search is not based on the run length. Instead, the efficiency of

each of the competing algorithms is determined. This is done by measuring the average

CPU time required to converge on a solution. First, a set of starting locations is

determined. Then the time to converge on a solution for each starting location is

measured. Finally, the simple mean is calculated.
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Local Search converges quickly. Simulated Annealing converges more slowly.

Therefore, the efficiency for a single run of Local Search is much better than for a single

run of Simulated Annealing. This does not reflect the solution quality. In order to

determine which algorithm performs the best, the efficiencies must be equalized. For

instance, Local Search may take 200 seconds for each run while both of the Simulated

Annealing algorithms take 400 seconds for each run. The efficiency of the algorithms are

equalized by letting the Local Search algorithm run twice for every run of Simulated

Annealing. The solution qi.ality for Local Search is obtained by taking the best out of

every two solutions to compute each difference in solution quality (8 i). Otherwise, the

MPD is calculated in the same way as before. The algorithm with the best solution

quality, adjusted for efficiency, is the more desirable algorithm. Sample calculations for

solution quality and efficiency are given at the end of Appendix A.
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Each of the alternative acceptance functions is applied against three models. The

first model, the timing of traffic lights, facilitates the development of the SLAM

implementation. The results from this model are of minor interest because the model

contains only two decision variables. The results do, however, show the expected

behavior of Simulated Annealing: the solution quality dominates Local Search and

improves with longer annealing runs. This achieves the first goal of the research, to

demonstrate the viability of using Simulated Annealing to optimize a simulation model.

The second model, the configuration of machines, provides greater insight to the

advantages and limitations of Simulated Annealing. This model is implemented in two

variations: as an open-queuing network, and as a closed-queuing network. The first

variation provides little additional information about the relative merits of the alternative

acceptance tests. It does show a more pronounced improvement with longer annealing

runs. This lends credibility to the idea that one long annealing run gives a better solution

than the best solution from multiple iterations of Local Search.

The second variation allows the optimal configuration to be predicted based on the

theory of closed queuing networks. The results from this variation are completely

unexpected. Two of the alternatives are clearly superior than any of the others. These

results suggest that an even better alternative might be developed.

The results are given for each of the models. The key elements to consider are the

determination of a base value used to calculate the solution quality, the selection of the
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two best Simulated Annealing alternatives, and the comparison to Local Search. Sample

calculations for solution quality and efficiency are given at the end of Appendix A.

4.1. The Timing of Traffic Lights Model

Recall that the timing of traffic lights model uses two decision variables. Each

decision variable represents the amount of time that a traffic light remains green. The

response value measures the average waiting time for cars arriving at a road-repair

location. The traffic lights control the flow of traffic through the section of road under

repair.

Each alternative acceptance function is tried several times using this model. In order

to compare the alternatives on the same basis, the annealing run length is fixed for either

100 trials or 200 trials. Then each alternative is tried 25 times and the average

performance measured. Two settings for the number of trials show how the performance

of Simulated Annealing improves with increasing run lengths. Comparing the average

solution quality shows that all of the alternatives perform well.

4.1.1. Establishing the Base Response Value.

The average solution quality is the discriminator between the alternative acceptance

tests. In order to establish the difference between the solutions obtained and the base

value, the base value had to be found. For this problem, the base value is the global

optimum. Since the configuration space is reasonably small, the global optimum is found

by complete enumeration of the response values. These values are obtained by taking 100

batches for each configuration. Every batch contains 50 observations of the waiting time.

These values are recorded in a grid with the time for light 1 on the horizontal axis and the
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time for light 2 on the vertical axis. The result is a map of the responses, showing many

local optima and several global optima. The values are rounded down to the nearest

integer value in order to enhance readability. Appendix A contains this response map.

Since the smallest value obtained is 76 seconds, this value is assumed to be the

optimal response and the corresponding configurations are assumed to be multiple optimal

configurations. The observed difference in solution quality is established by using this

value and subtracting each predicted value from it. The observed values are averaged

using Equation 3.16.

4.1.2. Comparing the Alternatives.

After establishing the optimum response value and generating the solutions, the

performance is measured. Appendix A contains the solutions obtained and the differences

from the base value used to calculate the average solution quality. The results of applying

the alternatives against the timing of traffic lights model are summarized in Table 4.1. The

Simulated Annealing alternatives all found solutions within about 4% difference given 100

trials and within about 3% difference given 200 trials.

Alternative MPD at 100 Trials MPD at 200 Trials
using 25 Starting Locations using 25 Starting Locations

Geometric Temperature 4.17 3.32
Linear Temperature 4.13 2.99
Adaptive Temperature 4.19 3.04
Elliptic Temperature 4.38 3.04
Logarithmic Temperature 4.07 2.93
with Linear Coefficient 4.79 3.18
with Elliptic Coefficient 3.89 3.17

TABLE 4.1 SOLUTION QUALITY

This demonstrates the expected behavior of Simulated Annealing: that longer runs

give better results. Note that, in this case, the additional trials only improve the solution
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by about 1%M For this problem, it appears that the shorter annealing runs are preferable

since two iterations can be performed for each of the longer runs.

4.1.3. Choosing the Best Alternatives.

The two best alternatives at the shorter run length both use a logarithmic

temperature function. The best alternative uses an elliptic coefficient function to force

convergence with an average 3.89 percent difference. The next best alternative,

Logarithmic Temperature, does not force convergence. It achieved a 4.07 percent

difference. Note that Logarithmic Temperature is the dominant alternative at the longer

run length with an average 2.93 percent difference. The convergence and tuning plots for

the Elliptic Coefficient approximate the shape of Logarithmic Temperature's plots more

closely than Linear Coefficient. These observations indicate that tuning alone is sufficient

to achieve good results. The forced convergence methods do not appear to have a

significant affect on performance in this problem.

4.1.4. Comparing with Local Search.

The comparison of the two best Simulated Annealing alternatives against Local

Search is made in two steps. The first step is to measure the efficiency of ei'I algorithm.

The measure is the average CPU time required by an algorithm to converge on a solution.

Since Local Search converges quickly, multiple runs can be made for every run of

Simulated Annealing. Table 4.2 shows the results.

Local Search is applied seven times for every iteration of Simulated Annealing with

a combined CPU time of 179.80 seconds on average. The two Simulated Annealing

alternatives range between 168.10 seconds on average and 185.10 seconds on average.

Note that the average solution quality obtained shows that both Simulated Annealing

alternatives dominate Local Search. Simulated Annealing with Logarithmic Temperature

and Elliptic Coefficient appears to be the most desirable algorithm.
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Algorithm Starting Locations Efficiency Solution Quality
Mean CPU Time Mean % Difference

Local Search (1 Iteration) 100 26.38 11.23
Local Search (7 Iterations) 70 (10 Solutions) 179.80 4.92
Simulated Annealing with 10 185.10 3.58
Logarithmic Temperature
(1 Iteration)
Simulated Annealing with 10 168.10 3.47
Logarithmic Temperature
and Elliptic Coefficient
(1 Iteration)

TABLE 4.2 COMPARISON WITH LOCAL SEARCH

4.2. The Configuration of Machines Model - Open Queuing Network

This model is an open queuing network. Recall that the model contains six machine

stations. Each station consists of several machines. The number of machines at a given

station is a decision variable. Hence, there are six decision variables. The objective is to

allocate 25 machines among the six stations so as to minimize the average processing time

for parts.

4.2.1. Establishing the Base Response Value.

The configuration space generated by the six decision variables is too large to

completely enumerate the response values. There is no theoretical basis at present for

determining what the optimum configuration should be. The only alternative left is to sort

through all of the solutions obtained and pick the minimal value. Appendix B contains the

data collected from the experiment. The lowest value, found throughout the data, is 1.48

seconds and this is used in calculating the solution quality.
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4.2.2 Comparing the Alternatives.

The open-queuing model is implemented using a random trial generator for the

Simulated Annealing alternatives. Only the alternatives shown in Table 4.2 are tried

because of time constraints in performing the research.

Alternative MPD at 100 Trials MPD at 200 Trials
using 25 Starting Locations using 25 Starting Locations

Linear Temperature 103.70 14.27
Adaptive Temperature 323.95 29.14
Logarithmic Temperature

with Linear Coefficient 131.32 20.70
with Elliptic Coefficient 136.89 18.57

TABLE 4.3 SOLUTION QUALITY

The Simulated Annealing alternatives have an average difference of about 130%

given 100 trials, except for Adaptive Temperature. Adaptive Temperature performs

significantly worse with an average difference over 300%. It does, however, perform

better at 200 trials with an average difference of about 30%. Note that all of the

alternatives improve the average difference 100% at the longer run. Therefore the longer

run is preferable.

4.2.3. Choosing the Best Alternatives.

Linear Temperature dominates at the longer run with an average difference of

14.27. The next best alternative is the Logarithmic Temperature with Elliptic Coefficient.

This alternative gives an average difference of 18.57. Since all of the alternatives use a

convergence method, no conclusion about the usefulness of forced convergence can be

made. It does appear, however, that the temperature function is a better way to force

convergence than the coefficient function for this problem.
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4.2.4. Comparing with Local Search.

Local Search is implemented using a structured trial generator. Five iterations of

Local Search can be run for every iteration of Simulated Annealing, on average. The

solution quality for one iteration of Local Search averages 82.48% in difference, but

improves to 37.16% when the best solution out of every five iterations is used. The

results are given below.

Algorithm Starting Locations Efficiency Solution Quality
Mean CPU Time Mean % Difference

Local Search (1 Iteration) 40 477.05 82.48
Local Search (5 Iterations) 40 (8 Solutions) 2385.25 37.16
Simulated Annealing with 10 2320.90 16.49
Linear Temperature
(1 Iteration)
Simulated Annealing with 10 2253.60 16.96
Logarithmic Temperature
and Elliptic Coefficient
(1 Iteration)

TABLE 4.4 COMPARISON WITH LOCAL SEARCH

Both of the Simulated Annealing alternatives dominate Local Search with five

iterations. The solution quality improves about 20% using either Simulated Annealing

algorithm. Both alternatives are also more efficient than Local Search with five iterations.

The dominant algorithm appears to be Simulated Annealing with Linear Temperature.

This data indicates that Simulated Annealing with Logarithmic Temperature and Elliptic

Coefficient is a close competitor.
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4.3. The Configuration of Machines Model - Closed Queuing Network

The closed queuing network is a variation of the configuration of machines model.

Instead of letting the parts arrive exponentially and depart the system after processing, the

closed network contains a fixed number of parts that never leave the system. There are 30

parts in the system. These parts cycle from station 1 through station 6, as before. Instead

of leaving the system after station 6, the parts return to station 1 and the processing time is

reset to zero.

4.3.1. Establishing the Base Response Value.

The optimum configuration is established using a PASCAL program written by Lt

Col Dietz. Given the one-step probability transition matrix (which describes the flow of

parts among the machine stations) and a configuration of machines, the program calculates

the steady-state waiting time at each station. The optimal solution is found by permuting

the configuration until the steady-state waiting time reaches a minimum. Applying the

optimal configuration to the simulation model results in a total waiting time of 15.49

seconds. Both theoretical and simulation data agree on this optimal configuration. The

PASCAL program, the results obtained from the program, and the data obtained from the

simulation model are contained in Appendix C. The base value of 15.49 seconds is used

to calculate solution quality.

4.3.2. Comparing the Alternatives.

The alternatives are implemented using a structured trial generator. The results

from the closed queuing network differ from the results of the previous two models.
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Simulated Annealing does not perform universally well. In fact, only the two alternatives

based on Logarithmic Temperature with a coefficient function performed well.

Alternative MPD at 100 Trials MPD at 200 Trials
using 25 Starting Locations using 10 Starting Locations

Geometric Temperature 167.28 185.33
Linear Temperature 90.91 126.62
Adaptive Temperature 186.12 131.43
Elliptic Temperature 169.72 132.54
Logarithmic Temperature 245.98 157.97

with Linear Coefficient 20.30 7.64
with Elliptic Coefficient 17.81 12.76

TABLE 4.5 SOLUTION QUALITY

Note that, except for the two alternatives mentioned, all of the alternatives

performed poorly. This may be due to the tuning method used. The tuning method in

Equation 3.3, used for the previous two models, is blindly applied to this model. In

general, the alternatives using a forced convergence technique performed better than those

using tuning alone. The results suggest, among forced convergence techniques, that a

coefficient function dramatically outperforms a temperature function. Solution quality for

these metlods seems less sensitive to deviations in the tuning parameter, cc. The solution

quality improved about 10% at 200 trials in the average difference for the two best

alternatives. Assuming that this is a significant improvement, the longer run is preferable

to the shorter run.

4.3.3. Choosing the Best Alternatives.

The Logarithmic Temperature with Linear Coefficient performs best at 200 trials

with an average difference of 7.64%. The Logarithmic Temperature with Elliptic

Coefficient performs second best at 200 trials with an average difference of 12.7%. None
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of the other alternatives come close. The next best alternative is more than 100% worse

on average.

4.3.4. Comparing with Local Search.

The comparison of efficiency shows that two to three iterations of Local Search can

be run for every iteration of Simulated Annealing. Taking the pessimistic approach, the

solution quality for Local Search with three iterations is used for comparison. The results

are shown below:

Algorithm Starting Locations Efficiency Solution Quality
Mean CPU Time Mean % Difference

Local Search (1 Iteration) 40 454.20 34.23
Local Search (3 Iterations) 30 (10 Solutions) 1388.50 19.94
Simulated Annealing with 10 1013.30 16.05
Logarithmic Temperature
and Linear Coefficient
(1 Iteration)
Simulated Annealing with 10 1137.80 12.12
Logarithmic Temperature
and Elliptic Coefficient
(1 Iteration) I I I

TABLE 4.6 COMPARISON WITH LOCAL SEARCH

Local Search with three iterations produces a solution quality of 19.94%. Both of

the Simulated Annealing alternatives dominate with solution qualities ranging between

12.12% and 16.05%. Both Simulated Annealing algorithms are also more efficient. The

dominant algorithm, based on this data, is Simulated Annealing with Logarithmic

Temperature and Elliptic Coefficient.

4.3.5. Additional Alternatives.

The two best Simulated Annealing alternatives both use a coefficient function in

conjunction with a Logarithmic Temperature. Among the temperature functions, the

70



Geometric Temperature and Linear Temperature performed best. Two more alternative

acceptance functions are devised using these temperature functions in place of the

Logarithmic Temperature. The results are given below.

Alternative MPD at 200 Trials
using 25 Starting Locations

Logarithmic Temperature
with Linear Coefficient 7.64
Linear Temperature
with Linear Coefficient 16.38
Geometric Temperature
with Linear Coefficient 12.58

TABLE 4.7 ADDITIONAL ALTERNATIVES

Although Geometric Temperature and Linear Temperature outperform Logarithmic

Temperature, the alternatives resulting from the Linear Coefficient function do not follow

this same preceden, e. There are many other acceptance functions that may be tried. The

selection of new alternatives can be guided by the results already obtained and some

knowledge of the simulation model to be optimized.

4.4. Summary

The three models investigated demonstrate the utility of Simulated Annealing in

optimizing simulation models. Simulated Annealing dominates Local Search and improves

with increased run length. These are general qualitative remarks. The quantitative

performance of Simulated Annealing depends on the model being used. For small

problems, like the Timing of Traffic Lights with two decision variables, a short annealing

run appears best. For large problems, like the Configuration of Machines with six decision
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variables, a long annealing run seems more appropriate. In some, cases proper tuning is

sufficient to achieve good solutions. In other cases, the use of forced convergence helps

find better solutions. Simulated Annealing with Logarithmic Temperature and Elliptic

Coefficient performs well on all of the models tested. Simulated Annealing works well

for optimizing stochastic models, but the traditional acceptance functions are not always

among the best alternatives.
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.y. Cocuin and Recoummndations

The research presented shows the applicability of Simulated Annealing as an

optimization technique for simulation models. The primary goal is to demonstrate how

the technique could be used with an existing simulation language, namely SLAM. A

secondary goal is to examine the affect that several alternative acceptance functions had

on performance, measured by solution quality and efficiency. No attempt is made to

justify the use of Simulated Annealing from a theoretical perspective. Rather, the

empirical results from three test cases are used to infer the practical utility of the

algorithm. The conclusions drawn as well as the recommendations for additional research

follow from these test cases.

5.1 Conclusions

The goal of demonstrating a SLAM based implementation of Simulated Annealing is

achieved as part of developing the three test cases. The SLAM implementation consists

of three parts: the network model, the control statements, and the user-inserts (of which

there were ten). A method for using generic programming structures and common

variable names allows four of the same user-inserts to be used for all test cases. The

remaining five user-inserts only need minor changes to adapt to a given model. The

control statements are also developed generically. The result is a general purpose

optimization scheme that allows both Local Search and Simulated Annealing to be

implemented.
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Experiments for each test case are conducted as follows:

1. Each of the optimization techniques was implemented.
2. The number of trial configurations was established.
3. The number of starting configurations was established

(Every technique used the same set of starting configurations).
4. The best solution found in each instance was recorded.
5. The average performance of the technique was computed.

In all three cases, some variation of Simulated Annealing dominates Local Search in

solution quality and efficiency. In the timing of traffic lights, all variations of Simulated

Annealing dominate Local Search. In the configuration of machines with open queuing,

all but one variation of Simulated Annealing dominate Local Search. In the configuration

of machines with closed queuing, only two of the seven Simulated Annealing variations

dominate Local Search. These results indicate that Simulated Annealing may have some

practical use for optimizing constrained simulation models.

There are two major concerns with applying Simulated Annealing to simulation

models: how to cope with random noise in the estimate, and how to obtain good results

within a predetermined amount of time. Seven different acceptance functions are devised,

using the concepts of tuning and forced convergence, to answer these concerns. All of the

alternatives are tuned the same way using Equation 3.3. The tuning parameter in each

acceptance function is set to a predetermined value. A specified difference in the

response values is accepted with 5% probability at the mid-way point through the trials.

That specified difference (A) is keyed to the variance in response estimates (02) by the

relationship: A = o/3. While the tuning method is fixed, the means for forcing the

convergence of the acceptance probabilities is not: two of the alternatives use a standard

acceptance function; three alternatives use different temperature functions to force

convergence; and two alternatives use a coefficient function to cause faster convergence in
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an otherwise standard acceptance function. The three test cases demonstrate how these

different acceptance functions affect performance.

The first test case is a simple model involving two decision variables. The number

of trial configurations used to establish a solution is a relatively large portion of the entire

configuration space. The precaution of sampling each response with multiple batches

reduces the affect of random noise. As a result, the difference in most neighboring

responses is larger than the error in estimates. Local Search obtains solutions which are

5% above the optimum on average while Simulated Annealing obtains solutions 3.5%

above the optimum on average. In this case, adequate results are obtained in shorter time

spans (100 trials).

The second test case involves six decision variables. The number of trial

configurations used to establish a solution is relatively small with respect to the

configuration space. Because this test case models an open queuing system, the average

number of parts in the system depends on the configuration. As a result, most

neighboring responses differ by more than the error in their estim --s. Local Search with

one iteration obtains solutions 82% above the optimum. Simulated Annealing with 100

trials obtains solutions more than 100% above the optimum. Local Search with five

iterations obtains solutions 37% above the optimum on average. Simulated Annealing

tuned for 200 trials obtains solutions 17% above the optimum on average. The results

imply that Simulated Annealing does not compare favorably against Local Search in

shorter search times when the model involves many decision variables, but clearly

dominates with longer search times available.

The third test case involves the same six decision variables, but models the system as

a closed queuing network. There are always thirty parts in the system regardless of the

configuration used. As a result, the response difference between many neighboring
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configurations becomes so small that the error in their estimates is large in comparison.

This explains the unusual results obtained. Local Search obtains solutions 20% above the

optimum on average and the two best Simulated Annealing alternatives obtain between

12% and 16% above the optimum on average. The remaining five Simulated Annealing

alternatives obtain solutions 160% above the optimum on average in 100 trials (130% in

200 trials). The only difference between the two best alternatives and the five worst

alternatives is the method used to force convergence. All five of the worst alternatives use

a temperature function while both of the best alternatives use a coefficient function. The

coefficient function accepts fewer challengers with response values close to the

incumbent's response. This implies that the poor alternatives are accepting too many

small increases in the response value. To confirm this pattern, two more alternatives are

tried that used coefficient functions. The results were similar. Therefore, Simulated

Annealing alternatives that use a coefficient function are less sensitive to errors in tuning.

The coefficient function appears to dominate the bias introduced by the temperature

function.

Simulated Annealing can be applied to a simulation model with good results. The

SLAM language can be used to implement the algorithm. The selection of an acceptance

function and the determination of an adequate search times remain problem dependent.

In general, an acceptance function with both a logarithmic temperature function and an

elliptic coefficient function appears to be a consistently good alternative.
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5.2 Recomnmndations

To date, there have been few articles written about the application of Simulated

Annealing to simulation models. Many of the results obtained from the application of

Simulated Annealing to deterministic functions may or may not be applicable. In the case

of the present study, many elements were fixed that might have been better implemented in

another way. One of these areas provides the subject matter for future research:

1. What are the affects of different permutation methods on solution quality?

Many of the questions raised in the conduct of this research might also generate

enough interest to merit further study:

2. How do different batching algorithms impact efficiency?
3. How does high estimate variance affect performance?
4. How does the number of trials needed to obtain good results increase as the

number of decision variables increase?

Another recommendation concerns the application of Simulated Annealing to

simulation models in an operational context. Imagine that an actual system performs

under a given set of constraints, but those constraints vary as machines break down or get

replaced. The optimal configuration of resources changes on a dynamic basis. Now

imagine that an operator has access to a simulation model conformant with the new

constraints and can use an optimization technique to find a good allocation of those

resources. What capabilities would the analyst want to have? These questions may have

the most significance:

5. Given a specified time constraint, which technique should be used?
6. Can the performance of Simulated Annealing be improved interactively, where

the analyst varies the temperature at will?
7. Can Simulated Annealing be made artificially intelligent?
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Most of all, it is hoped that the present research will help future researchers to find

good solutions to real problems.
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A. 1 Scenario

The scenario definition links the pieces together by name. It lists the filename for

itself as SCE1, the control statements as CONT, the network model as NET1, and each of

the user inserts. Filename extensions are omitted since they must conform to a the

standard convention. The scenario definition used in the Job-Shop problem follows the

same format.

Although the scenario definition does not specify the contents of each module, it

does require that each named module exist. The SLAM executive coordinates the

instructions within each module to maintain consistency. If a module is improperly named,

is inconsistent with syntax requirements, or exceeds the program's limitations, then the

executive will generate an error message. The scenario will not run correctly if the

modules fail to meet these guidelines.

The control statements are identical for all three simulation models. The statements

themselves specify initialization conditions for each simulation run as well as executive

constraints used throughout the program's execution. These control statements support

three main ideas:

1. To maintain program flow and syntax,
2. To transfer executive control to the user inserts, and
3. To achieve a common basis of comparison for each trial configuration.

The GEN statement constrains the program's execution to 100,000 simulation runs

and suppresses the generation of unneeded output reports. These constraints allow the

external subroutines to generate the required number of simulation runs and report the

results in a desired format without conflicting with the SLAM executive.
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The LIMITS statement identifies the number of files required to store entities (6),

the number of attributes needed to describe each entity (2), and the maximum number of

entities allowed within the model at any given time (500). An entity is any object which

can enter a model, can change the model, can be changed by the model, or can exit the

model (25:64). These settings minimize the memory requirements of each entity while

maximizing the capacity for entities within the model.

The STAT statement allocates a file for the collection of statistics based on

observations recorded in an external subroutine. This enaules the external subroutines to

do two things: 1) to collect the desired observations needed to estimate the response, and

2) to use the statistical tools embedded in SLAM.

The SEEDS statement causes the pseudo-random number streams to be reinitialized

for each simulation run. This reduces the variability between the incumbent and challenger

responses. As a result, each simulation run uses common random numbers. The

acceptance test can more accurately compare responses because each configuration faces

a common set of experimental conditions (25:745).

The ARRAY statements make memory available to all external subroutines and

ensure that memory does not get reinitialized between simulation runs. The external

subroutines use the memory space to record solutions and to maintain control parameters

needed by the algorithm.

The NETWORK, INITIALIZE, and FIN statements are required by the SLAM

executive to maintain program flow and syntax. The FIN statement terminates the list of

control statements. The INITIALIZE statement constrains each simulation run to

1,000,000; more time than is actually needed. This allows the user inserts to determine

the end of each run. The NETWORK statement transfers control to network model.
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The network model consists of four segments: the resource and gate definitions, the

control of traffic at light 1, the control of traffic at light 2, and the control of the cycle.

The resources, STARTI and START2, model the time-lag between stopped cars. The

gates. LIGHTI and LIGHI2, model the traffic lights.

The control of traffic models the arrival of cars with an exponential distribution.

The t -- of the exponential distribution implies that the arrival of cars is "memoryless": the

arrival a car neither depends on the arrival of the previous car nor affects the arrival of the

next car (27:203). On average, though, the cars arrive nine seconds apart at light I and

twelve seconds apart at light 2.

Examine the arrival of cars at light 1. The traffic waits for resource START1 and

proceeds across the stretch of road when gate LIGHT1 is open (the light is green). If the

car was stopped, it takes two more seconds to get started and up to the light. If the car

was already moving, it proceeds directly across the stretch of road. Statistics are collected

for waiting time at LIGHTl using a COLCT statement. Statistics are collected for the

overall waiting time using the EVENT statement which links to a user insert. The

observations collected using EVENT are used to calculate the response value. The

control of traffic at light 2 works in an identical manner.

The timing of the lights uses a single entity to cycle through each of the four stages.

At first both gates are closed (both lights are red). Next gate LIGHT1 is opened (green)

for time XX(4) and then closed for 55 seconds. Finally gate LIGHT2 is opened for XX(5)

seconds and the closed for 55 seconds. The cycle repeats until the simulation run ends.

An entity placed into the network by a user insert immediately terminates the run.
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A. 1.1 Scenario Definition.

Scenario:
SCE1
Control:
CONT
Network:
NET1
Script:
Facility:
User Insert:
EVENT 1
FIRST1
INTLC
NEXT1
OTPUT
OUT1
PUT1
RAN
TEST1
TIME
Notes:
Data:
Curchange:
00000000
Definition:

A. 1.2 Control Statenmnts.

GEN,WARRENDER,TRAFFIC,7/20/93,1000,N,NO,Y/N,NO,N/1,
7 2 ;

LIMITS, 4,3,550;
STAT,3,WAIT TIME;
SEEDS, 9375295(1)/Y;
ARRAY (1, 21) ;
ARRAY (2, 21) ;
ARRAY (3, 21) ;
NETWORK;
INITIALIZE,, 100000,Y;
FIN;
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A. 1.3 Network Mfodel.

RESOURCE/STARTi, 1/START2, 3;
GATES/LIGHTi, CLOSE, 2/LIGHT2, CLOSE, 4;

;TRAFFIC FROM DIRECTION 1
CREATE, EXPON (9, 1),, 1;
AWAIT(1) ,START1;
AWAIT (2) ,LIGHT1;
COLCT(2),INT(1),WAIT TIME 1;
EVENT, 1,1;
ACT, 2,TNOW .GT.ATRIB(l);
ACT;
FREE, STARTi;
TERM;

;TRAFFIC FROM DIRECTION 2
CREATE, EXPON (12, 1) , 1;
AWAIT (3) ,START2;

AWAIT(4) ,LIGHT2;
COLCT(3),INT(1),WAIT TIME 2;
EVENT, 1,1;
ACT,2,TNOW .GT.ATRIB(1);
ACT;
FREE, START2;
TERM;

;TRAFFIC LIGHTS
CREATE.,,, 1;
ACT, 55;

LOOP OPEN, LIGHTI;
ACT, XX (4) ;
CLOSE, LIGHTi;
ACT, 55;
OPEN, LIGHT2;
ACT, XX (5) ;
CLOSE, LIGHT2;
ACT, 55, ,LOOP;
ENTER, 1,1;
TERM, 1;

END;
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A. 1.4 User Inserts.

A. 1.4.1 Subroutine INTLC.

$INCLUDE: 'PRCTL .FOR'

C** ANNEALING ROUTINE CONTROL **

SUBROUTINE INTLC
$INCLUDE: 'PARAM.INC'
$INCLUDE: 'SCOMI.COM'

SELECT CASE (II)
**************** ***** ** ** *** * ** ** ** * * ***** * ** *** * ** *** *

C** NEIGHBORING SOLUTIONS **C** * ** * * *** ** ** ** ** ** ** * *** ** ***************************

CASE (2, 12, 22, 32, 42, 52, 62, 72, 82, 92)
CALL NEXT

C** NEW INITIAL SOLUTIONS **

CASE (1, 11, 21, 31, 41, 51, 61, 71, 81, 91)
II = II + 1

CALL FIRST

C** LOCAL SEARCH INITIAL SOLUTION (N=100, M=25) **
* * * ************************ ***************************

CASE (0)
II = 2
CALL PUTARY( 3, 3, 25.0)
CALL PUTARY( 3, 4, 0.0)
CALL PUTARY( 3, 5, 0.0)
CALL PUTARY( 3, 6, 3853417.0)
CALL PUTARY( 3, 7, 5113297.0)
CALL PUTARY( 3, 8, 1522731.0)
CALL FIRST

C*GEOMETRIC TEMPERATURE INITIAL SOLUTION (N-100, M=25)*

CASE (10)
II = 12
CALL PUTARY( 3, 3, 25.0)
CALL PUTARY( 3, 4, 0.0)
CALL PUTARY( 3, 5, 1.0)
CALL PUTARY( 3, 6, 3853417.0)
CALL PUTARY( 3, 7, 5113297.0)
CALL PUTARY( 3, 8, 1522731.0)
CALL FIRST
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C**** ***** ** ** *** ****** * ** * **** ** **** ** **** * ****** ****

C** LINEAR TEMPERATURE INITIAL SOLUTION (N=100, M=25)*

CASE (20)
II = 22
CALL PUTARY( 3, 3, 25.0)
CALL PUTARY( 3, 4, 0.0)
CALL PUTARY( 3, 5, 2.0)
CALL PUTARY( 3, 6, 3853417.0)
CALL PUTARY( 3, 7, 5113297.0)
CALL PUTARY( 3, 8, 1522731.0)
CALL FIRST

C**ADAPTIVE TEMPERATURE INITIAL SOLUTION (N=100, M=25)*

CASE (30)
II = 32
CALL PUTARY( 3, 3, 25.0)
CALL PUTARY( 3, 4, 0.0)
CALL PUTARY( 3, 5, 3.0)
CALL PUTARY( 3, 6, 3853417.0)
CALL PUTARY( 3, 7, 5113297.0)
CALL PUTARY( 3, 8, 1522731.0)
CALL FIRST

C**ELLIPTIC TEMPERATURE INITIAL SOLUTION (N=100, M-25)*C*** ****************************************************

CASE (40)
II = 42
CALL PUTARY( 3, 3, 25.0)
CALL PUTARY( 3, 4, 0.0)
CALL PUTARY( 3, 5, 4.0)
CALL PUTARY( 3, 6, 3853417.0)
CALL PUTARY( 3, 7, 5113297.0)
CALL PUTARY( 3, 8, 1522731.0)
CALL FIRST

CLOGARITHMIC TEMPERATURE INITIAL SOLUTION (N=100, M=25)
* * * *** *** **** * *** *** ** ** ** * ***** ** ******** ** ** * ** * ** *

CASE (50)
II = 52
CALL PUTARY( 3, 3, 25.0)
CALL PUTARY( 3, 4, 0.0)
CALL PUTARY( 3, 5, 5.0)
CALL PUTARY( 3, 6, 3853417.0)
CALL PUTARY( 3, 7, 5113297.0)
CALL PUTARY( 3, 8, 1522731.0)
CALL FIRST
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C** LINEAR COEFFICIENT INITIAL SOLUTION (N-100, M-25)**

CASE (60)
II - 62
CALL PUTARY( 3, 3, 25.0)
CALL PUTARY( 3, 4, 0.0)
CALL PUTARY( 3, 5, 6.0)
CALL PUTARY( 3, 6, 3853417.0)
CALL PUTARY( 3, 7, 5113297.0)
CALL PUTARY( 3, 8, 1522731.0)
CALL FIRST

C**ELLIPTIC COEFFICIENT INITIAL SOLUTION (N=100, M=25)*
******* ** * ** ** ************** ****** *********************

CASE (70)
II = 72
CALL PUTARY( 3, 3, 25.0)
CALL PUTARY( 3, 4, 0.0)
CALL PUTARY( 3, 5, 7.0)
CALL PUTARY( 3, 6, 3853417.0)
CALL PUTARY( 3, 7, 5113297.0)
CALL PUTARY( 3, 8, 1522731.0)
CALL FIRST

C*******************************************************

C** LOCAL SEARCH INITIAL SOLUTION (N=200, M-25) **
C*******************************************************

CASE (80)
II = 82
CALL PUTARY( 3, 3, 25.0)
CALL PUTARY( 3, 4, 0.0)
CALL PUTARY( 3, 5, 8.0)
CALL PUTARY( 3, 6, 3853417.0)
CALL PUTARY( 3, 7, 5113297.0)
CALL PUTARY( 3, 8, 1522731.0)
CALL FIRST

C*GEOMETRIC TEMPERATURE INITIAL SOLUTION (N=200, M=25)*

CASE (90)
II = 92
CALL PUTARY( 3, 3, 25.0)
CALL PUTARY( 3, 4, 0.0)
CALL PUTARY( 3, 5, 9.0)
CALL PUTARY( 3, 6, 3853417.0)
CALL PUTARY( 3, 7, 5113297.0)
CALL PUTARY( 3, 8, 1522731.0)
CALL FIRST
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C** LINEAR TEMPERATURE INITIAL SOLUTION (N-200, M-25)*

CASE (100)
II = 102
CALL PUTARY( 3, 3, 25.0)
CALL PUTARY( 3, 4, 0.0)
CALL PUTARY( 3, 5, 102.0)
CALL PUTARY( 3, 6, 3853417.0)
CALL PUTARY( 3, 7, 5113297.0)
CALL PUTARY( 3, 8, 1522731.0)
CALL FIRST

C**ADAPTIVE TEMPERATURE INITIAL SOLUTION (N-200, M-25)*

CASE (110)
II = 112
CALL PUTARY( 3, 3, 25.0)
CALL PUTARY( 3, 4, 0.0)
CALL PUTARY( 3, 5, 11.0)
CALL PUTARY( 3, 6, 3853417.0)
CALL PUTARY( 3, 7, 5113297.0)
CALL PUTARY( 3, 8, 1522731.0)
CALL FIRST

C**ELLIPTIC TEMPERATURE INITIAL SOLUTION (N=200, M-=25)*

CASE (120)
II = 122
CALL PUTARY( 3, 3, 25.0)
CALL PUTARY( 3, 4, 0.0)
CALL PUTARY( 3, 5, 12.0)
CALL PUTARY( 3, 6, 3853417.0)
CALL PUTARY( 3, 7, 5113297.0)
CALL PUTARY( 3, 8, 1522731.0)
CALL FIRST

CLOGARITHMIC TEMPERATURE INITIAL SOLUTION (N=200, M-25)

CASE (130)
II = 132
CALL PUTARY( 3, 3, 25.0)
CALL PUTARY( 3, 4, 0.0)
CALL PUTARY( 3, 5, 13.0)
CALL PUTARY( 3, 6, 3853417.0)
CALL PUTARY( 3, 7, 5113297.0)
CALL PUTARY( 3, 8, 1522731.0)
CALL FIRST
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C** LINEAR COEFFICIENT INITIAL SOLUTION (N=200, M=25)**

CASE (140)
II - 142
CALL PUTARY( 3, 3, 25.0)
CALL PUTARY( 3, 4, 0.0)
CALL PUTARY( 3, 5, 14.0)
CALL PUTARY( 3, 6, 3853417.0)
CALL PUTARY( 3, 7, 5113297.0)
CALL PUTARY( 3, 8, 1522731.0)
CALL FIRST

C**ELLIPTIC COEFFICIENT INITIAL SOLUTION (N=200, M=25)*
* ** ** ** *** ** ** * *** * ** *** ** * *** * *** * ** ************* * ****

CASE (150)
II = 152
CALL PUTARY( 3, 3, 25.0)
CALL PUTARY( 3, 4, 0.0)
CALL PUTARY( 3, 5, 15.0)
CALL PUTARY( 3, 6, 3853417.0)
CALL PUTARY( 3, 7, 5113297.0)
CALL PUTARY( 3, 8, 1522731.0)

END SELECT
WRITE(*,10) INT(II/10+1.0), INT(GETARY(3,4)+I.0),

+ INT(GETARY(3, 2) + 1.0)
10 FORMAT (315)

RETURN
END

A.1.4.2 Subroutine FIRST.

$INCLUDE: 'PRCTL.FOR'
SUBROUTINE FIRST

$INCLUDE: 'PARAM.INC'
$INCLUDE: 'SCOM1.COM'

C** STARTING GREEN LIGHT TIMES, **
C** XX(4) = LIGHT 1, XX(5) = LIGHT 2 **

CALL RAN(6,R1)
CALL RAN(6,R2)
XX(4) = 50.0 + REAL(INT(R1*40.0))
XX(5) = 40.0 + REAL(INT(R2*40.0))
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C** INITIALIZE XX(1) = SAMPLES AND XX(2) - BATCHES**
*********************** * * **** *** ***********

XX(1) = 0.0
XX(2) - 0.0
XX(3) - 0.0

C** INITIALIZE INCUMBENT AND SOLUTION VALUES **

CALL PUTARY( 1, 1, 99999.9)
CALL PUTARY( 1, 2, 0.0)
CALL PUTARY( 1, 3, 30.0)
CALL PUTARY( 2, 1, 99999.9)
CALL PUTARY( 2, 2, 0.0)
CALL PUTARY( 2, 3, 30.0)

C** INITIALIZE ARRAY(3,1) - TOTAL RUNS **
C** ARRAY(3,2) - CURRENT RUN **

RT = 100.0 + 100.0 * INT(GETARY(3, 5)/8)
CALL PUTARY( 3, 1, RT)
CALL PUTARY( 3, 2, 0.0)
CALL PUTARY( 3, 9, 0.0)
CALL PUTARY( 3,10, 0.0)
CALL PUTARY( 3,11, 0.0)
CALL PUTARY( 3,12, 0.0)
CALL SETTIM( 0, 0, 0, 0)

RETURN
END

A.1.4.3 Subroutine NEXT.

$ INCLUDE: 'PRCTL .FOR'
SUBROUTINE NEXT

$INCLUDE: 'PARAM.INC'
$INCLUDE: 'SCOM1.COM'

C** INITIALIZE INCUMBENT SOLUTION **
C** AND SELECT A GUIDED DIRECTION **

XX(4) = GETARY(1,4)
XX(5) = GETARY(1, 5)
R = GETARY(3,2) - GETARY(3,10) - GETARY(3, 11)
I = INT(MOD(R, 12.0))
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SELECT CASE (I)
CASE ( 0)

XX(5) - XX(5) + 1.0
CASE ( 1)

XX(5) - XX(5) + 2.0
CASE ( 2)

XX(4) - XX(4) + 1.0
XX(5) - XX(5) + 1.0

CASE ( 3)
XX(4) -= XX(4) + 1.0

CASE ( 4)
XX(4) = XX(4) + 2.0

CASE ( 5)
XX(4) = XX(4) + 1.0
XX(5) = XX(5) - 1.0

CASE ( 6)
XX(5) = XX(5) - 1.0

CASE ( 7)
XX(5) = XX(5) - 2.0

CASE ( 8)
XX(4) = XX(4) - 1.0
XX(5) = XX(5) - 1.0

CASE ( 9)
XX(4) = XX(4) - 1.0

CASE (10)
XX(4) - XX(4) - 2.0

CASE (11)
XX(4) = XX(4) - 1.0
XX(5) = XX(5) + 1.0

END SELECT
RETURN
END

A.1.4.4 Subroutine RAN.

$INCLUDE: 'PRCTL.FOR'
SUBROUTINE RAN (IS, R)

$INCLUDE: 'PARAM.INC'
$ INCLUDE: 'SCOM1.COM'

REAL Z, R, C, G
C = 4.294967296E+9
Z = GETARY(3, IS)
G = 5*Z + 99991
Z = MOD(G,C)
R - Z/C
CALL PUTARY(3, IS, Z)
RETURN
END
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A. 1.4.5 Subroutine EVENT.

$ INCLUDE:' PRCTL.FOR'
C

SUBROUTINE EVENT (I)
C
$INCLUDE: 'PARAM.INC'
$ INCLUDE: 'SCOMi.COM'
C

DIMENSION A(10)
REAL BATCHES, PROBABILITY

C** COLLECT XX(1) SAMPLES AND TOTAL WAIT XX(2) **

IF (TNOW.LT.500.0) RETURN
XX(1) = XX(1) + 1
XX(2) - XX(2) + TNOW - ATRIB(1)

C** RECORD BATCH MEAN **

IF (XX(1).LT.50) RETURN
WAIT = XX(2)/50
XX(1) = 0.0
XX(2) = 0.0
CALL COLCT(WAIT,i)
BATCHES = CCNUM(I) - 10.0

C** STOP COLLECTING BATCHES WHEN CRITERIA MET: **
C** LESS THAN 100% CHANCE OF ACCEPTANCE OR 30 BATCHES*

IF (BATCHES.LT.0) RETURN
CALL TEST (PROBABILITY)
TERM = PROBABILITY*(1 - BATCHES/31.25)
IF (TERM.LE.0.20) THEN

CALL ENTER (1, A)
RETURN

END IF
RETURN
END
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A.1.4.6 Subroutine TEST.

$INCLUDE: 'PRCTL .FOR'

SUBROUTINE TEST (PT)
C
$INCLUDE: 'PARAM.INC'
$INCLUDE: 'SCOM1.COM'
C

REAL RT,RC,T,Y1, S1,N1,Y2, S2,N2, SP,DY,L,PT

C** DELTA FUNCTION **
• ****************** ******* ** *** ** *** ******** *

Y1 = GETARY (1,1)
Y2 = CCAVG(1)
DY - (Y2-YI)

C** CALCULATE PT; THE PROBABILITY OF ACCEPTANCE **

IF (DY.LT.0.0) THEN
PT = 1.0
RETURN

END IF
IT - INT(GETARY(3, 5))

* ** ********** * ** ** * ** * ** ******************* * *** * ** *

C** ACCEPTANCE FUNCTION **

SELECT CASE(IT)
CASE (0, 8)

PT = 0.0
RETURN

C**************** ~************************************
CASE (1)

RC = GETARY(3, 2)
T = 1.60*0.95**(INT(RC/10.0)-I.0)
PT = EXP(-DY/T)
RETURN

CASE (9)
RC = GETARY(3, 2)
T = 2.08*0.95**(INT(RC/10.0)-1.0)
PT = EXP(-DY/T)
RETURN

CASE (2, 10)
RT = GETARY(3, 1)
RC = GETARY(3, 2)
T = 2.67 * (RT - RC) / RT
PT = EXP(-DY/T)
RETURN
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CASE (3, 11)
RT - GETARY(3, 1)
RC - GETARY(3, 2)
Si - GETARY(1,2) + 0.0001
Ni - GETARY(1,3)
S2 - CCSTD(1) + 0.0001
N2 - CCNUM(1)
SP - SQRT(((Nl-i)*S1**2+(N2-1)*S2**2)/(N1+N2-2))
T - 0.22 * SP * (RT - RC) / RT
PT - EXP(-DY/T)
RETURN

CASE (4, 12)
RT - GETARY(3, 1)
RC - GETARY(3, 2)
T - 1.54 * SQRT(1 - (RC/RT)**2)
PT = EXP(-DY/T)

RETURN

CASE (5)
RT = GETARY(3, 1)
RC = GETARY(3, 2)
T - 5.24/LOG(RC + 1.0)
PT - EXP(-DY/T)
RETURN

CASE (6)
RT - GETARY(3, 1)
RC = GETARY(3, 2)
T -6.84/LOG(RC + 1.0)
L = (RT - RC)/RT
PT = L*EXP(-DY/T)
RETURN

CASE (7)
RT = GETARY(3, 1)
RC = GETARY(3, 2)
T = 5.52/LOG(RC + 1.0)
L = SQRT(1 - RC**2/RT**2)
PT = L*EXP(-DY/T)
RETURN

CASE (13)
RT = GETARY(3, 1)
RC = GETARY(3, 2)
T = 6.15/LOG(RC + 1.0)
PT = EXP(-DY/T)
RETURN

CASE (14)
RT = GETARY(3, 1)
RC = GETARY(3, 2)
T = 8.04/LOG(RC + 1.0)
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L - (RT - RC)/RT
PT - L*EXP(-DY/T)
RETURN

CASE(15)
RT - GETARY(3, 1)
RC = GETARY(3, 2)
T = 6.48/LOG(RC + 1.0)
L - SQRT(l - RC**2/RT**2)
PT - L*EXP(-DY/T)
RETURN

** ** *** ** * *** * ** * *** * * ********** ************** ******

END SELECT
END

A.1.4.7 Subroutine OTPUT.

$INCLUDE: 'PRCTL.FOR'
SUBROUTINE OTPUT

$INCLUDE: 'PARAM. INC'
$INCLUDE: 'SCOM1.COM'

REAL YC, YI, YB, RT, RC, PT, PC, SC, ST

C** INCREMENT THE NUMBER OF RUNS **
C** RETRIEVE YC AND YI SOLUTIONS **

RT = GETARY(3, 1)
RC - GETARY(3, 2)
CALL TEST (PT)
RC - RC + 1.0
CALL PUTARY(3, 2, RC)
CALL RAN(8,PC)
YC = CCAVG(l)
YI = GETARY(1, 1)
YB = GETARY(2, 1)
AO - GETARY(3, 9)
Al = GETARY(3, 10)
A2 = GETARY(3, 11)
A3 = GETARY(3, 12)

C** YC IS LESS THAN PREVIOUS YB SOLUTION **

IF (YC.LT.YB) THEN
AO = AO + 1.0
Al = Al + 1.0
CALL PUTARY(3, 9, AO)
CALL PUTARY(3, 10, Al)
CALL PUT(l)
CALL PUT(2)
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GOTO 100
END IF

C******************* *** *** ********** **

C** YC IS LESS THAN YI SOLUTION **
* * ** **** ** * ** ***************** ** * *** ** * ** * **** * ******

IF (PT.EQ.1) THEN
AO - AO + 1.0
A2 - A2 + 1.0
CALL PUTARY(3, 9, AO)
CALL PUTARY(3, 11, A2)
CALL PUT(I)
GOTO 100

END IF
**************** ** * *** * ******************** ** ** *** * ** *

C**DETERMINE ACCEPTANCE OF A MOVE AWAY FROM OPTIMUM *
C**COMPARE THE PC AGAINST PT OF ACCEPTANCE **

IF (PC.LT.PT) THEN
AO - AO + 1.0
A3 -A3 + 1.0
CALL PUTARY(3, 9, AO)
CALL PUTARY(3, 12, A3)
CALL PUT(i)

END IF

C** ANNEALING COMPLETE, START FROM NEW SOLUTION **
**** ************************ ******************* ** *** *

100 IF (RC.LT.RT) RETURN
II = II - 1
ST - GETARY(3, 3)
SC = GETARY(3, 4) + 1.0
CALL PUTARY(3, 4, SC)
CALL OUT

C** TEST COMPLETE, START NEW TEST **

IF (SC.LT.ST) RETURN
II - II + 9

C** PROBLEM COMPLETE **

IF (II.LT.160) RETURN
WRITE(*,*) 'TYPE ENTER TO CONTINUE'
REA (*,*)
STOP
END
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A. 1.4. SubroutIne PUTý

$ INCLUDE: 'PRCTL.FJXR'
SUBROUTTrlq PUT (Ii)

$INCLUDE: 'rAAM.INC'
$INCLUDE: 'SCOMi .COM'

CALL PUTARY(I1, 1, CCAVG(l))
CALL PUTARY(I1, 2, CCSTD(1))
CALL PUTARY(I1, 3, CCNUMl))
CALL PUTARY(I1, 4, )CX(4))
CALL PUTARY(I1, 5, )X(s))
RETURN
END

A. 1.4.9 Subroutine OUT.

$INCLUDE: 'PRCTL.FOR'
SUBROUTINE OUT

$INCLUDE: 'PARAM.INC'
$INCLUDE: 'SCOMi .COM'

CALL TIME (RTIME)
IT - INT(RTIME)
IA - INT(II/lO) + 1
IS - INT(GETARY(3, 4))
IR - INT(GETARY(3, 2))
IMO - INT(GETARY(3, 9))
IM1 - INT(GETARY(3,10))
1M2 - INT(GETARY(3,11))
IM3 - INT(GETARY(3,12))
OPEN(UNIT-8,ACCESS-'APPEND' ,FILE-'VALl .DOC')
OPEN(UNIT-9,ACCESS-'APPEND' ,FILE-'SOL1 .DAT')
OPEN(UNIT-l0,ACCESS-'APPEND',FILE -'RECl.DOC')
NRITE(8, 10) IA, ,',IS,''

"+ INT(GETARY(1,4)) , ',INT(GETARY(l,5))

10 FORMAT(15, Al, 15, Al, 15, Al, I5, Al)
WRITE(9, 20) IA ,'',IS ,'',IT,

"+ ER, , IMO ,'',IMi , , I M2,
"+ IM3 ,'',GETARY(2,l) f , GETARY(2,2),

20 FORMAT(15, Al, 15, Al, 15, Al,
"+ 15, Al, I5, Al, 15, Al, 15, Al,
"+ I5, Al, F8.2, Al, F8.2, Al)
WRITE(l0, *)IA, IS
WRITE(10, *)GETARY(3, 6)
WRITE(l0, *)GETARY(3, 7)
WRITE(10, *)GETARY(3, 8)
CLOSE(UNIT =8, STATUS - 'KEEP')
CLOSE(UNIT -9, STATUS - 'KEEP')
CLOSE(UNIT -10, STATUS - 'KEEP')
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RETURN
END

A. 1.4.10 Subroutine TIME.

C** RETURNS SYSTEM TIME IN SECONDS **

SUBROUTINE TIME (RTIME)
C

REAL RTIME
CALL GETTIM(IHR, IMIN, ISEC, II00TH)
RTIME - 3600*REAL(IHR)+60*REAL(IMIN)+REAL(ISEC)+

+ REAL(I100TH)/100.0
RETURN
END

A.2 Optimal Solution.

The following two pages contain the response map generated by completely

enumerating the configurations and finding their responses. The responses were obtained

for each configuration by taling the mean of 100 batch means. Each batch contained 50

samples. The global optimum was found by scanning the response map and taking the

minimum value. Several global optima were found, as shown in bold font. The minimum

value was found to be 76 seconds.
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80 999893972336415112119103103 96 96 91 91 88 89 87 87 86 86 84 83
79 999820894257337117112101103 95 95 90 91 88 88 85 87 86 86 85 84

T 78 999738821204258108118 98101 94 94 90 89 87 88 86 85 86 86 84 85
77 999660738178204110107102 97 92 93 88 90 85 87 86 86 84 86 84 84

R 76 999579660149179104109 96102 92 92 88 88 87 85 84 85 84 84 85 84

75 999496580130149105104 98 96 93 92 87 88 85 87 83 84 84 83 82 85

A 74 999417496116130101105 94 98 90 93 88 87 85 85 F5 83 82 84 83 82

73 991332417113115100101 96 93 91 90 87 87 84 85 83 85 82 83 84 83

F 72 91625133.111113 99100 92 96 87 91 86 87 85 84 83 83 84 82 81 83

71 834199251104111 97 99 91 91 91 87 86 86 85 84 83 83 82 84 81 81
F 70 751168199105104 98 96 91 91 86 90 84 86 84 85 82 83 82 81 83 80

69 671149169 99105 92 98 88 91 86 85 87 83 83 84 84 82 82 82 81 83
I 68 586123149102 99 94 92 90 87 85 86 83 87 82 83 82 84 81 82 82 81

67 503115123100101 90 94 87 90 83 85 84 83 85 82 82 82 83 81 81 82
C 66 417111115 97101 91 90 87 86 85 83 83 84 81 85 81 82 81 83 80 82

65 330107111 98 96 90 91 85 87 83 85 81 83 83 81 84 81 81 81 82 80

64 24510610't 96 98 89 90 86 84 83 83 83 80 81 82 80 84 80 80 80 82

195101105 94 95 89 89 84 86 82 83 81 83 79 81 82 80 83 80 80 81
L 62 170101101 93 94 88 89 84 84 82 81 81 80 82 79 80 81 79 83 80 79

61 140 99101 91 93 88 88 84 83 82 82 80 81 79 81 79 80 80 79 82 80

1 60 121 97 99 91 91 86 87 84 84 81 81 80 80 80 79 80 79 79 80 79 82

59 114 98 96 88 90 85 86 84 84 82 81 80 80 79 80 78 80 78 79 80 78
G 58 107 96 98 87 88 85 85 83 84 82 82 79 80 79 79 79 78 80 78 78 80

57 106 90 96 89 88 84 85 1 83 81 81 81 79 79 79 78 80 77 80 78 78
H 56 104 93 90 88 89 83 84 81 81 81 81 80 81 78 79 78 78 80 77 80 78

55 100 92 93 84 88 85 83 81 82 79 81 80 79 80 78 78 78 78 79 76 80
T 54 102 88 92 86 84 83 85 80 81 80 80 80 80 79 80 77 78 78 78 80 77

53 98 90 88 84 86 81 83 83 80 79 80 79 79 79 79 79 77 78 78 77 79

52 95 88 90 83 84 82 81 80 83 79 79 79 79 79 79 78 79 77 78 78 77

51 94 86 87 84 84 81 82 79 30 81 79 77 79 78 79 78 78 79 77 78 78
2 50 95 86 86 82 84 80 81 80 79 79 81 79 78 78 78 78 79 79 79 77 78

49 92 87 87 80 82 81 80 79 79 78 79 80 79 77 78 78 78 78 79 79 77

48 91 85 38 83 80 80 81 78 80 78 78 79 80 78 78 79 78 79 79 79 80
47 92 83 85 84 83 77 80 79 78 78 78 77 79 79 79 77 78 78 78 79 79

T 46 90 86 84 82 83 81 77 79 79 78 79 79 78 79 30 79 78 79 79 79 81
45 91 84 87 80 81 80 81 76 78 78 78 78 79 77 79 79 79 78 79 79 80

1 44 88 85 84 84 81 81 81 81 77 78 79 79 80 80 79 81 81 81 80 82 82

43 85 82 85 81 83 79 81 80 81 76 78 79 79 80 80 79 81 81 81 80 82
M42 87 82 84 83 83 83 81 80 81 82 78 80 81 82 83 83 82 85 85 85 84

41 84 82 32 81 83 81 83 80 81 80 82 78 80 80 81 82 83 82 85 84 85

E40 87 81 84 82 84 84 85 85 84 84 85 86 83 84 86 88 90 92 91 95 96

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
T R A F F I C L I G H T I T I M E
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80 83 85 83 85 83 83 86 82 85 82 84 84 85 82 84 84 83 82 87 81 86
79 84 82 85 82 85 83 83 86 82 85 82 84 84 85 82 84 84 83 82 87 81

T 78 85 83 82 84 81 84 83 82 85 81 85 82 84 83 85 82 84 84 83 82 87

77 84 84 83 82 84 81 84 83 82 85 81 85 82 84 83 85 81 83 83 83 82
R 76 84 84 84 82 81 84 81 84 82 82 85 81 85 81 84 83 84 81 83 83 83

75 85 83 83 84 82 81 84 81 84 82 81 85 81 85 81 84 83 84 81 83 83
A 74 82 84 83 83 84 81 83 81 84 82 81 85 80 85 81 84 83 85 81 83

73 83 81 84 83 83 83 81 81 83 81 84 82 81 85 81 85 81 84 83 84 81

F 72 83 82 81 83 82 82 83 81 81 83 81 84 83 81 85 81 85 81 84 83 84

71 81 83 82 81 83 82 82 83 81 81 83 80 83 82 81 84 81 85 81 83 82
F 70 80 81 83 81 80 83 82 82 83 81 81 83 80 83 82 81 84 80 85 81 84

69 83 80 80 82 81 80 82 81 81 83 81 80 83 80 83 82 81 84 80 85 81

I 68 81 82 80 80 82 81 80 82 82 81 83 81 80 83 80 82 83 81 84 80 85

67 82 80 81 80 80 82 81 80 82 81 81 82 81 80 83 80 82 82 81 84 80

C 66 82 81 80 81 79 80 82 80 80 82 81 81 82 81 80 83 80 82 82 81 83
65 80 81 81 79 81 79 80 81 80 80 82 81 81 82 80 79 83 80 82 82 81

64 82 79 81 81 79 81 79 80 81 80 80 82 81 81 82 80 79 83 80 82 82
63 81 82 79 80 81 79 81 79 79 81 81 80 82 81 81 81 80 79 83 80 82

L 62 79 80 82 79 80 81 79 81 79 79 81 81 80 82 81 81 81 81 79 83 80
61 80 79 80 82 79 80 80 79 81 79 80 81 81 80 82 81 81 81 80 79 83

1 60 82 80 79 80 81 79 80 80 79 81 79 79 81 81 80 82 81 81 81 80 79
59 78 81 80 79 80 81 79 80 80 79 81 79 80 81 81 80 82 181 81 81

G 58 80 78 81 79 79 80 81 79 80 80 79 80 79 80 81 81 80 82 81 81 80
57 78 80 78 81 79 79 80 81 79 79 79 79 80 79 80 181 80 82 81 81

H 56 78 78 80 78 81 79 79 80 81 79 80 80 79 80 80 80 81 881 82 81

55 80 78 77 79 78 81 79 79 80 81 79 79 79 79 80 80 80 81 80 80 82
T 54 77 80 78 77 79 78 81 79 79 80 82 79 79 79 80 81 80 81 81 81 81

53 7976 80 78 77 79 78 81 79 79 80 82 79 79 79 80 81 80 81 81 81
52 77 7976 80 78 78 79 78 81 79 79 80 82 80 80 80 81 81 81 82 82

51 78 77 7976 79 78 78 79 78 81 79 79 80 82 80 80 80 81 81 82 82

2 50 78 78 78 80 76 80 78 78 80 79 82 80 80 81 83 82 81 82 82 83 83
49 77 78 78 78 7976 80 78 78 80 78 82 80 79 81 83 82 81 81 82 83
48 80 78 80 79 78 81 77 82 79 80 81 81 84 81 81 84 85 85 83 84 85

47 79 80 78 80 79 78 81 77 82 79 80 81 81 84 81 81 84 85 85 83 84
T 46 81 81 81 79 81 81 80 83 80 84 82 83 83 85 87 85 85 87 89 90 87

45 80 81 81 81 79 81 81 80 83 79 84 82 83 83 84 87 85 85 87 89 90
1 44 82 82 84 83 84 82 84 85 84 88 84 90 88 89 91 92 96 95 95100101

43 82 82 82 84 83 84 82 84 85 84 88 84 90 88 89 91 91 96 95 95100
M 42 84 86 88 87 90 90 91 91 92 97 95101 96105112114119122134146153

41 85 84 86 88 86 89 90 91 91 92 97 94 01 96105112114119122134146

E 40 96 97 98101105109113124126135147161177200215267305341366414449

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
T R A F F I C L I G H T 1 T I M E
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A.3 Data.

A.3.1 Alternatives Compared.

Geometric Temperature Solution Quality at 100 Trials

RUN XX(1) XX(2) 81
1 63 47 4.94
2 68 50 2.04
3 86 57 2.12
4 85 64 2.65
5 87 62 2.30
6 92 56 2.45
7 88 64 2.65
8 65 51 1.44
9 88 61 2.01
10 63 55 2.48
11 94 84 7.09
12 87 66 2.53
13 74 58 2.30
14 79 59 3.42
15 60 47 5.11
16 86 66 4.27
17 61 45 4.94
18 68 56 2.48
19 83 59 2.45
20 79 57 2.12
21 89 86 7.55
22 93 61 3.15
23 85 58 2.72
24 65 53 1.44

25 83 66 2.65
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Linear Temperature Solution Quality at 100 Trials

RUN XX(l) XX(2)
1 65 45 4.94
2 65 53 1.44
3 86 61 2.72
4 84 57 2.12
5 80 57 2.01
6 67 51 2.04
7 86 57 2.12
8 67 58 2.04
9 78 69 3.81
10 83 57 2.12
11 95 77 7.55
12 71 60 2.01
13 86 55 2.72
14 88 61 2.30
15 63 45 5.45
16 67 59 4.86
17 65 53 1.44
18 71 54 2.48
19 83 61 2.78
20 80 59 2.30
21 90 82 7.55
22 89 57 2.45
23 96 71 4.33
24 62 56 2.48
25 84 60 2.45
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Adaptive Temperature Solution Quality at 100 Trials

RUN XX(1) XX(2)
1 61 45 4.94
2 69 49 2.81
3 86 55 2.12
4 78 61 3.05
5 80 57 2.01
6 71 55 3.27
7 86 55 2.12
8 75 51 2.81
9 74 62 3.58
10 67 50 2.04
11 93 74 6.16
12 86 61 2.12
13 71 65 5.09
14 86 55 2.12
15 66 45 5.57
16 65 53 1.44

17 64 47 4.13
18 65 53 1.44
19 85 64 2.12
20 84 64 2.30
21 97 70 4.33
22 82 57 2.12
23 102 65 4.33
24 79 55 3.05
25 73 65 4.55
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Elliptic Temperature Solution Quality at 100 Trials

RUN XX(1) XX(2)
1 63 48 4.94
2 69 49 2.04
3 82 59 2.12
4 79 53 3.69
5 85 64 2.01
6 83 57 2.45
7 87 59 2.65
8 75 51 2.81
9 85 66 4.69
10 80 61 2.01
11 91 87 7.09
12 90 59 2.12
13 78 61 2.53
14 77 55 4.31
15 66 46 5.11
16 84 66 4.15
17 64 47 4.94
18 69 57 2.48
19 82 59 2.12
20 66 51 1.44
21 84 84 7.55
22 85 54 3.15
23 82 68 2.78
24 70 53 1.44
25 86 65 2.65
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Logarithmic Temperature Solution Quality at 100 Trials

RUN XX(1) XX(2) bi
1 63 39 4.94
2 63 59 2.48
3 87 54 2.45
4 81 60 2.01
5 75 56 2.30
6 79 65 2.53
7 84 61 2.65
8 70 51 2.04
9 83 70 2.65
10 85 56 2.30
11 103 86 7.55
12 88 60 2.12
13 66 50 2.04
14 81 66 3.25
15 59 42 6.23
16 74 54 3.30
17 63 48 2.81
18 69 53 2.04
19 91 62 2.12
20 82 59 2.12
21 99 72 6.19
22 88 55 2.78
23 98 66 4.33
24 65 54 1.44
25 86 64 2.65

105



Logarithmic Temperature with Linear Coefficient Solution Quality at 100 Trials

RUN XX(1) XX(2) Ni
1 61 45 4.94
2 61 47 2.04
3 86 63 2.12
4 89 56 3.15
5 80 64 3.55
6 69 49 2.56
7 86 62 2.78
8 67 51 2.04
9 87 54 3.81
10 80 68 3.81
11 97 80 7.55
12 81 60 2.12
13 74 65 5.00
14 86 57 2.45
15 61 45 5.45
16 71 66 4.57
17 79 53 3.30
18 73 58 4.72
19 82 59 2.12
20 88 63 2.65
21 97 81 7.55
22 87 58 3.15
23 97 70 4.33
24 62 56 2.48
25 86 63 2.78
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Logarinhmic Temperature with Elliptic Coefficient Solution Quality at 100 Trials

RUN XX(1) XX(2)
1 63 43 4.94
2 66 51 2.04
3 85 64 2.30
4 69 61 4.20
5 85 63 2.30
6 67 52 2.04
7 87 62 2.65
8 67 51 1.44
9 79 63 2.01
10 86 57 2.01
11 91 76 6.19
12 88 61 2.12
13 66 56 3.27
14 81 60 2.12
15 63 45 4.94
16 66 52 1.44
17 64 47 2.81
18 63 55 2.48
19 90 56 2.12
20 87 58 2.78
21 89 81 7.55
22 89 57 2.45
23 97 71 4.33
24 65 53 1.44
25 82 65 2.01
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Geometnr Temperature Solution Quality at 200 Trials

RUN XX(1) XX(2)
1 64 45 4.94
2 68 50 1.44
3 68 49 1.44
4 81 60 2.01
5 86 66 2.65
6 66 52 1.44
7 82 59 2.01
8 67 51 1.44
9 86 61 2.78
10 84 53 2.45
11 98 73 4.33
12 87 65 2.01
13 69 53 1.44
14 88 60 2.01
15 63 45 4.94
16 75 62 2.81
17 65 54 1.44
18 65 52 1.44
19 88 56 2.12
20 88 55 2.01
21 101 66 4.36
22 80 56 3.15
23 104 61 4.33
24 65 54 1.44
25 87 60 2.65
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Linear Temperature Solution Quality at 200 Trials

RUN XX(I) XX(2)
1 68 55 2.04
2 72 54 1.44
3 67 51 1.44
4 88 61 2.12
5 78 61 2.01
6 79 65 2.12
7 88 61 2.30
8 65 45 1.44
9 85 64 2.01
10 73 50 2.01
11 76 74 4.62
12 84 56 2.12
13 69 52 1.44
14 69 49 2.04
15 71 54 2.04
16 78 61 3.99 __
17 65 47 1.44
18 64 47 1.44
19 69 54 2.01
20 71 47 2.04
21 100 67 4.36
22 85 64 2.12
23 98 73 4.33
24 65 53 1.44
25 86 55 2.45
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Adaptive Temperature Solution Quality at 200 Trials

RUN XX(1) XX(2)
1 69 54 2.04
2 70 56 1.44
3 67 51 1.44
4 65 53 1.44
5 85 64 2.45
6 89 57 2.53
7 81 59 2.01
8 85 49 2.01
9 88 63 2.65
10 64 54 1.44
11 91 59 2.65
12 86 56 2.01
13 65 52 1.44
14 89 59 2.72
15 71 51 4.13
16 88 61 2.45
17 67 51 1.44
18 61 45 2.56
19 85 64 2.01
20 85 64 2.12
21 100 67 4.36
22 85 64 2.45
23 100 72 4.33
24 71 54 1.44
25 85 58 2.12
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Elliptic Temperature Solution Quality at 200 Trials

RUN XX(1) XX(2)
1 72 54 2.81
2 67 51 1.44
3 67 51 2.04
4 75 64 2.53
5 67 51 2.01
6 63 55 2.01
7 64 43 2.04
8 65 53 1.44
9 79 63 2.01
10 65 54 2.12
I11 109 69 4.33
12 87 62 2.45
13 65 53 1.44
14 68 53 1.44
15 67 51 2.04
16 67 51 2.04
17 67 52 2.04
18 65 46 1.44
19 88 64 2.12
20 78 54 3.30
21 97 70 4.33
22 85 64 2.01
23 102 64 4.33
24 67 51 1.44
25 86 60 2.65



Logarithmic Temperature Solution Quality at 200 Trials

,RUN XX(1) XX(2) 8

1 63 41 5.11
2 70 56 1.44
3 78 64 2.30
4 84 60 2.01
5 89 62 2.30
6 64 54 1.44
7 86 57 2.01
8 67 50 1.44
9 65 46 2.04
10 92 59 2.30
11 71 62 2.12
12 102 62 4.33
13 80 61 2.01
14 86 63 2.01
15 71 48 1.44
16 75 61 2.01
17 67 51 1.44
18 85 56 2.01
19 101 68 4.33
20 86 60 2.01
21 67 55 1.44
22 84 63 2.65
23 84 55 2.12
24 73 53 1.44
25 83 57 2.01
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Logarithmic Temperature with Linear Coefficient Solution Quality at 200 Trials

RUN XX(1) XX(2) 81
1 70 53 2.04
2 64 54 1.44
3 86 61 2.30
4 87 55 2.01
5 92 59 2.30
6 92 59 2.72
7 85 64 2.01
8 63 55 1.44
9 85 64 2.30
10 85 64 2.65
11 97 70 4.33
12 87 62 2.12
13 85 64 2.12
14 80 63 2.12
15 71 47 2.04
16 78 50 4.12
17 63 48 2.04
18 63 55 1.44
19 80 54 2.65
20 67 51 1.44
21 100 70 4.33
22 89 66 2.45
23 91 76 4.33
24 66 52 1.44
25 82 56 2.30
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Logarithmic Temperature with Elliptic Coefficient Solution Quality at 200 Trials

RUN XX(I) XX(2)

1 66 56 1.44
2 70 56 1.44
3 88 64 2.30
4 90 59 2.01
5 69 49 2.04
6 66 53 1.44
7 82 58 2.01
8 71 50 1.44
9 76 60 4.18
10 75 61 2.01

11 83 95 6.19
12 83 57 2.01
13 68 55 3.27
14 92 59 2.01
15 59 50 1.44
16 66 52 1.44

17 72 54 2.56
18 67 51 2.04
19 84 58 2.01
20 65 52 1.44
21 103 64 4.33
22 86 63 2.78
23 100 68 4.36
24 65 53 1.44
25 85 56 2.65
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A.3.2 Local Search Compared.

Local Search Efficiency (I Iteration)

Run Total Accepted Best Worst Better CPU Time
Moves Moves Moves Moves Moves

1 19 2 2 0 0 21.00
2 19 3 3 0 0 25.00
3 19 6 6 0 0 35.00
4 19 1 1 0 0 15.00
5 19 2 2 0 0 25.00
6 19 2 2 0 0 25.00
7 19 2 2 0 0 19.00
8 19 2 2 0 0 29.00
9 19 1 1 0 0 13.00

10 19 1 1 0 0 13.00
11 19 4 4 0 0 33.00
12 19 3 3 0 0 27.00
13 19 2 2 0 0 20.00
14 19 1 1 0 0 15.00
15 19 4 4 0 0 29.00
16 19 2 2 0 0 21.00
17 19 4 4 0 0 27.00
18 19 4 4 0 0 25.00
19 19 2 2 0 0 19.00
20 19 3 3 0 0 34.00
21 19 3 3 0 0 30.00
22 19 6 6 0 0 51.00
23 19 1 1 0 0 13.00
24 19 3 3 0 0 23.00
25 19 9 9 0 0 52.00



Local Search Efficiency (1 Iteration)

Run Total Accepted Best Worst Better CPU Time
Moves Moves Moves Moves Moves

26 19 6 6 0 0 51.00
27 19 4 4 0 0 26.00
28 19 1 1 0 0 14.00
29 19 1 1 0 0 15.00
30 19 3 3 0 0 24.00
31 19 3 3 0 0 24.00
32 19 5 5 0 0 48.00
33 19 2 2 0 0 18.00
34 19 3 3 0 0 22.00
35 19 1 1 0 0 14.00
36 19 1 1 0 0 14.00
37 19 2 2 0 0 20.00
38 19 2 2 0 0 45.00
39 19 1 1 0 0 15.00
40 19 1 1 0 0 13.00
41 19 1 1 0 0 14.00
42 19 1 1 0 0 14.00
43 19 2 2 0 0 22.00
44 19 4 4 0 0 25.00
45 19 1 1 0 0 23.00
46 19 2 2 0 0 20.00
47 19 2 2 0 0 23.00
48 19 7 7 0 0 38.00
49 19 3 3 0 0 60.00
50 19 2 2 0 0 25.00
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Local Search Efficiency (1 Iteration)

Run Total Accepted Best Worst Better CPU Time
Moves Moves Moves Moves Moves

51 19 3 3 0 0 22.00
52 19 7 7 0 0 44.00
53 19 4 4 0 0 22.00
54 19 3 3 0 0 23.00
55 19 3 3 0 0 24.00
56 19 4 4 0 0 25.00
57 19 1 1 0 0 16.00
58 19 8 8 0 44.00
59 19 2 2 0 29.00
60 19 1 1 0 0 13.00
61 19 3 3 0 0 30.00
62 19 4 4 0 0 29.00
63 19 1 1 0 0 16.00
64 19 8 8 0 0 44.00
65 19 4 4 0 0 29.00
66 19 3 3 0 0 47.00
67 19 1 1 0 0 13.00
68 19 3 3 0 0 22.00
69 19 1 1 0 0 14.00
70 19 3 3 0 0 26.00
71 19 3 3 0 0 27.00
72 19 3 3 0 0 30.00
73 19 1 1 0 0 21.00
74 19 3 3 0 0 24.00
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Local Search Efficiency (1 Iteration)

Run Total Accepted Best Worst Better CPU Time
Moves Moves Moves Moves Moves

75 19 1 1 0 0 14.00
76 19 3 3 0 0 39.00
77 19 2 2 0 0 21.00
78 19 8 8 0 0 44.00
79 19 4 4 0 0 22.00
80 19 1 1 0 0 14.00
81 19 3 3 0 0 34.00
82 19 1 1 0 0 13.00
83 19 3 3 0 0 34.00
84 19 1 1 0 0 14.00
85 19 1 1 0 0 13.00
86 19 2 2 0 0 28.00
87 19 3 3 0 0 22.00
88 19 2 2 0 0 17.00
89 19 8 8 0 0 41.00
90 19 3 3 0 0 23.00
91 19 3 3 0 0 24.00
92 19 3 3 0 0 30.00
93 19 3 3 0 0 34.00
94 19 4 4 0 0 35.00
95 19 8 8 0 0 63.00
96 19 2 2 0 0 37.00
97 19 3 3 0 0 22.00
98 19 2 2 0 0 23.00
99 19 6 6 0 0 51.00
100 19 4 4 0 0 26.00
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Local Search Solution Quality (1 Iteration)

RUN XX(1) XX(2)

1 51 41 14.38
2 57 63 17.56
3 82 51 5.84
4 71 69 6.79
5 79 59 4.90
6 68 55 5.36
7 80 68 4.54
8 69 53 5.03
9 73 76 6.41
10 70 63 5.62
11 91 76 6.19
12 79 59 4.90
13 65 66 11.45
14 62 64 14.51
15 55 43 7.35
16 65 67 9.73
17 66 45 6.13
18 63 56 4.93
19 80 68 4.54
20 69 53 5.03
21 91 76 6.19
22 81 53 5.59
23 88 72 10.09
24 57 61 13.39
25 79 65 5.68
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Local Search Solution Quality (1 Iteration)

RUN XX(1) XX(2)
26 81 53 5.59
27 86 63 2.78
28 69 58 6.63
29 64 73 18.51
30 61 78 23.99
31 84 56 3.78
32 81 53 5.59
33 51 47 12.35
34 80 68 4.54
35 64 72 17.30
36 53 59 23.99

37 71 59 5.73
38 67 43 7.59
39 78 63 3.05
40 88 74 9.79
41 64 70 15.04
42 81 76 9.13
43 73 66 5.39
44 63 56 4.93
45 79 65 5.68
46 59 47 6.30

_ 47 81 76 9.13
48 82 51 5.84
49 57 41 6.23
50 68 55 5.36
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Local Search Solution Quality (1 Iteration)

RUN XX(1) XX(2)
51 75 51 4.63
52 57 41 6.23
53 67 51 2.04
54 57 61 13.39
55 75 73 4.76
56 61 73 21.24
57 51 48 14.91
58 59 47 6.30
59 69 53 5.03
60 73 75 5.60
61 69 49 2.81
62 66 45 6.13
63 51 48 14.91
64 59 47 6.30
65 68 78 13.02
66 85 51 6.12
67 69 57 3.99
68 61 75 23.40
69 69 56 4.56
70 57 65 20.98
71 53 53 15.32
72 81 72 6.15
73 85 56 3.15
74 57 62 16.54
75 77 57 4.91
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Local Search Solution Quality (1 Iteration)

RUN XX(1) XX(2)

76 57 41 6.23
77 51 41 14.38
78 59 47 6.30
79 67 51 2.04
80 53 59 23.99
81 69 53 5.03
82 89 75 7.28
83 69 53 5.03
84 88 71 10.19
85 89 75 7.28
86 69 49 2.81
87 67 70 10.87
88 86 63 2.78
89 82 51 5.84
90 57 61 13.39
91 75 73 4.76
92 57 65 20.98
93 69 53 5.03
94 87 62 3.25
95 71 47 4.13
96 57 41 6.23
97 61 75 23.40
98 68 55 5.36
99 81 53 5.59
100 86 63 2.78
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Local Search Efficiency (7 Iterations)

Run Total Accepted Best Worst Better CPU Time
Moves Moves Moves Moves Moves

1 70 2 2 0 0 165.00
2 70 3 3 0 0 150.00
3 70 6 6 0 0 185.00
4 70 1 1 0 0 230.00
5 70 2 2 0 0 165.00
6 70 2 2 0 0 135.00
7 70 2 2 0 0 211.00
8 70 2 2 0 0 185.00
9 70 1 1 0 0 177.00

10 70 1 1 0 0 195.00

Local Search Solution Quality (7 Iterations)

RUN XX(1) XX(2) •

1 51 41 4.54

2 57 63 4.90

3 82 51 4.54

4 71 69 2.78
5 79 59 3.78

6 68 55 3.05
7 80 68 4.93
8 69 53 2.04

9 73 76 2.81

10 70 63 3.99
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Simulated Annealing with Logarithmic Temperature Efficiency (I Iteration)

Run Total Accepted Best Worst Better CPU Time
Moves Moves Moves Moves Moves

1 62 58 10 19 29 266.00
2 62 31 13 6 12 132.00
3 62 68 10 24 34 263.00
4 62 21 5 4 12 89.00
5 62 71 5 32 34 248.00
6 62 52 6 23 23 192.00
7 62 60 6 23 31 223.00
8 62 22 8 4 10 74.00
9 62 69 10 23 36 256.00

10 62 27 5 8 14 108.00

Simulated Annealing with Logarithmic Temperature Solution Quality (1 Iteration)

RUN XX(1) XX(2)

1 63 43 4.94
2 63 55 1.44
3 86 63 2.12
4 78 69 3.81
5 82 68 2.78
6 70 55 1.44
7 74 60 2.01
8 70 56 2.56
9 86 61 2.78
10 69 57 3.30
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Simulated Annealing with Logarithmic Temperature and Elliptic Coefficient Efficiency
(1 Iteration)

Run Total Accepted Best Worst Better CPU Time
Moves Moves Moves Moves Moves

1 57 51 10 16 25 241.00
2 57 50 15 14 21 193.00
3 57 49 11 15 23 217.00
4 57 21 5 6 10 79.00
5 57 45 6 15 24 205.00
6 57 52 7 19 26 220.00
7 57 56 5 21 30 230.00
8 57 15 4 6 5 62.00
9 57 29 7 12 10 111.00

10 57 35 5 12 18 123.00

SAMPLE CALCULATION: Mean CPUTime .(CPU Time) = 1681= 168.10
10 10

Simulated Annealing with Logarithmic Temperature Solution Quality (1 Iteration)

RUN XX(1) XX(2)
1 63 43 4.94
2 72 54 2.04
3 81 59 2.01
4 78 69 3.81
5 71 55 2.01
6 69 49 1.44
7 86 61 2.01
8 67 58 3.79
9 80 61 2.30
10 82 60 2.01

100108 •=1026.36=34SAMPLE CALCULATION: Mean Percent Difference = - 0 102- = 3.47
125) 10 iI 76 76
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B. 1 Scenario

The network model shows the segmentation of the machine stations, the processing

time distributions for each station, and the transition probabilities between stations. The

model consists of nine segments. The first segment defines the decision variables RI

(where I represents the numbers 1 through 6), the number of resources available at each

station. Although the model initializes the number of machines per station to zero, a user

insert alters the number according to each trial configuration. The second segment models

the arrival of parts to the job-shop using an exponential distribution with an average inter-

arrival rate of one part every five seconds.

Segments three through eight model the machine stations using identical logic. As

each part arrives at a station, it is "tagged" with the time TNOW using ATRLB(2). When

a machine becomes available to process that part, the waiting time spent at the station is

added to ATRIB(1). Processing time for each machine is exponentially distributed with an

average of five seconds. After this processing, the part is routed probabilistically to the

next station. The shipment from one station to the next occurs with an exponential

distribution at an average of two seconds. Stations one through five all have two transition

probabilities; each probability equal to 50%. Station six has a 100% transition probability.

Segment nine collects the statistics on the overall waiting time through the EVENT

statement, linking to a user insert. Once enough samples have been collected for a given

simulation run, the user insert enters an entity into the model which then terminates the

simulation.

The network models uses generic structures: the XX(I) array represents decision

variables and the ARRAY(IJ) array represents control parameters. The generic structure

of the network model facilitates the transfer of control to the user inserts.
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B.11Scnenaro Definition.

Scenario:
SCE 1
Control:
CONT
Network:
NET2
Script:
Facility:
User Insert:
EVENT2
FIRST2
INTLC
NEXT 2
OTPUT
OUT2
PUT2
RAN
TEST2
T IME
Notes:
Data:
Curchange:
00000000
Definition:

B. 1.2 Control Statements.

GEN,WARRENDER,MACHINES,7/20/93,100000,N,N,Y/N,N,N/1,7
2 ;

LIMITS, 6,2,500;
STAT, l,WAIT TIME;
SEEDS, 8653713 (10) /Y, 6470899(9) /Y, 4286515 (8) /Y,

4399739(7) /Y, 6475819(6) IY, 9113213 (5) IY, 8126355 (4) /Y,
2734681 (3) /Y, 6315779 (2) /Y, 9375295(1) /Y;
ARRAY (1, 2 1) ;
ARRAY (2, 21) ;
ARRAY (3, 21) ;
NETWORK;
INITIALIZE, ,1000000, Y;
FIN;
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B. 1.3 Network Model.

RESOURCE/1,R1 (0)11;
RESOURCE/2,R2 (0) ,2;
RESOURCE/3, R3 (0), 3;
RESOURCE/4,R4 (0), 4;
RESOURCE/ 5, R5 (0) , 5;
RESOUJRCE/ 6, R6 (0) , 6;

INPUT CREATE,EXPON(5,2) ....1;
IN ASSIGN,ATRIB(I)-0.0,1;

ACTIVITY, ...Al;

Al ASSIGN,ATRIB(2)-TNOW, 1;
AWAIT (1) , R1, , 1;
ASSIGN,ATRIB(l)-ATRIB(1)+TNOW-ATRIB(2) ,1;
ACTIVITY/1,EXPON (5,3), ,Fl;

Fl FREE,R1/1,1;
ACTIVITY/12,EXPON(2,9) ,0.5,A2;
ACTIVITY/13,EXPON(2,10) ,0.5,A3;

A2 ASSIGN,ATRIB (2) -TNOW, 1;
AWAIT (2) , R2, , 1;
ASSIGN,ATRIB(1)-ATRIB(1)+TNOW-ATRIB(2) ,1;
ACTIVITY/2,EXPON (5,4), ,F2;

F2 FREE,R2/1,1;
ACTIVITY/21,EXPON(2,9) ,0.5,A1;
ACTIVITY/24,EXPON (2, 10), 0.5,A4;

A3 ASSIGN, ATRIB (2) =TNOW, 1;
AWAIT (3), R3, , 1;
ASSIGN,ATRIB(1)-ATRIB(1) +TNOW-ATRIB (2), 1;
ACTIVITY/3,EXPON(5,5) ,,F3;

F3 FREE, R3 /1, 1;
ACTIVITY/31,EXPON(2,9) ,0.5,A1;
ACTIVITY/35,EXPON (2, 10), 0.5,A5;

A4 ASSIGN,ATRIB(2)=TNOW, 1;
AWAIT (4), ,R4, , 1;
ASSIGN,ATRIB(1)-ATRIB(1) +TNOW-ATRIB (2) ,1;
ACTIVITY/4,EXPON (5, 6), ,F4;

F4 FREE, R4 /1, 1;
ACTIVITY/42,EXPON(2, 9) ,0.5,A2;
ACTIVITY/46,EXPON(2,10) .O.5,A6;

A5 ASSIGN,ATRIB(2)=TNOW, 1;
AWAIT(S) ,R5,, 1;
ASSIGN,ATRIB(1)=ATRIB(1)+TNOW-ATRIB (2) ,1;
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ACTIVITY/5,EXPON(5,7), ,F5;
F5 FREE,R5/1,1;

ACTIVITY/53,EXPON (2, 9) ,O.5,A3;
ACTIVITY/56, EXPON (2,10), 0.5,A6;

A6 ASSIGN,ATRIB(2)-TNOW, 1;
AWAIT (6) , R6 0, ,1;
ASSIGN,ATRIB(l)-ATRIB(1)+TNOW-ATRIB(2) ,1;
ACTIVITY/6, EXPON (5,8) , ,F6;

F6 FREE, R6 /1,1;
ACTIVITY,,. ,El;

El E' 7,NT,1, 1;
A..flVITY .. ,OUT;

OUT TERMINATE,;
ENTER, 1,1;
ACTIVITY, ...END;

END TERMINATE, 1;
END;
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B.1.4 User Inserls.

B. 1.4.1 Subroutine INTLC.

$INCLUDE: 'PRCTL.FOR'

C** ANNEALING ROUTINE CONTROL **

SUBROUTINE INTLC
$INCLUDE: 'PARAM.INC'
$INCLUDE: 'SCOM1.COM'

SELECT CASE (II)

C** NEIGHBORING SOLUTIONS **

CASE (2, 12, 22, 32, 42, 52, 62, 72, 82, 92)
CALL NEXT

C** NEW INITIAL SOLUTIONS **

CASE (1, 11, 21, 31, 41, 51, 61, 71, 81, 91)
II - II + 1

CALL FIRST'

C** LOCAL SEARCH INITIAL SOLUTION (N-100, M-25) **

CASE (0)
II = 2
CALL PUTARY( 3, 3, 25.0)
CALL PUTARY( 3, 4, 0.0)
CALL PUTARY( 3, 5, 0.0)
CALL PUTARY( 3, 6, 3853417.0)
CALL PUTARY( 3, 7, 5113297.0)
CALL PUTARY( 3, 8, 1522731.0)
CALL FIRST

******* * *** * ** * **** * ** ** * ******************** ** * *** *** *

C** LINEAR TEMPERATURE INITIAL SOLUTION (N=100, M=25)*

CASE (10)
II - 12
CALL PUTARY( 3, 3, 25.0)
CALL PUTARY( 3, 4, 0.0)
CALL PUTARY( 3, 5, 1.0)
CALL PUTARY( 3, 6, 3853417.0)
CALL PUTARY( 3, 7, 5113297.0)
CALL PUTARY( 3, 8, 1522731.0)
CALL FIRST
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C**ADAPTIVE TEMPERATURE INITIAL SOLUTION (N-100, M4-25)*

CASE (20)
II - 22
CALL PUTARY( 3, 3, 25.0)
CALL PUTARY( 3, 4, 0.0)
CALL PUTARY( 3, 5, 2.0)
CALL PUTARY( 3, 6, 3853417.0)
CALL PUTARY( 3, 7, 5113297.0)
CALL PUTARY( 3, 8, 1522731.0)
CALL FIRST

C** LINEAR COEFFICIENT INITIAL SOLUTION (N=100, M-25)**
******* ******************** ************* ***************

CASE (30)
II - 32
CALL PUTARY( 3, 3, 25.0)
CALL PUTARY( 3, 4, 0.0)
CALL PUTARY( 3, 5, 3.0)
CALL PUTARY( 3, 6, 3853417.0)
CALL PUTARY( 3, 7, 5113297.0)
CALL PUTARY( 3, 8, 1522731.0)
CALL FIRST

C**ELLIPTIC COEFFICIENT INITIAL SOLUTION (N-100, M-25)*

CASE (40)
II - 42
CALL PUTARY( 3, 3, 25.0)
CALL PUTARY( 3, 4, 0.0)
CALL PUTARY( 3, 5, 4.0)
CALL PUTARY( 3, 6, 3853417.0)
CALL PUTARY( 3, 7, 5113297.0)
CALL PUTARY( 3, 8, 1522731.0)
CALL FIRST

C** LOCAL SEARCH INITIAL SOLUTION (N-200, M-25) **

CASE (50)
II = 52
CALL PUTARY( 3, 3, 25.0)
CALL PUTARY( 3, 4, 0.0)
CALL PUTARY( 3, 5, 5.0)
CALL PUTARY( 3, 6, 3853417.0)
CALL PUTARY( 3, 7, 5113297.0)
CALL PUTARY( 3, 8, 1522731.0)
CALL FIRST

**************1***********2****************************
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C** LINEAR TEMPERATURE INITIAL SOLUTION (N-200, M-25)*

CASE (60)
II - 62
CALL PUTARY( 3, 3, 25.0)
CALL PUTARY( 3, 4, 0.0)
CALL PUTARY( 3, 5, 6.0)
CALL PUTARY( 3, 6, 3853417.0)
CALL PUTARY( 3, 7, 5113297.0)
CALL PUTARY( 3, 8, 1522731.0)
CALL FIRST

C**ADAPTIVE TEMPERATURE INITIAL SOLUTION (N=200, M-25)*

CASE (70)
II - 72
CALL PUTARY( 3, 3, 25.0)
CALL PUTARY( 3, 4, 0.0)
CALL PUTARY( 3, 5, 7.0)
CALL PUTARY( 3, 6, 3853417.0)
CALL PUTARY( 3, 7, 5113297.0)
CALL PUTARY( 3, 8, 1522731.0)
CALL FIRST

C** LINEAR COEFFICIENT INITIAL SOLUTION (N=200, M-25)**

CASE (80)
II - 82
CALL PUTARY( 3, 3, 25.0)
CALL PUTARY( 3, 4, 0.0)
CALL PUTARY( 3, 5, 8.0)
CALL PUTARY( 3, 6, 3853417.0)
CALL PUTARY( 3, 7, 5113297.0)
CALL PUTARY( 3, 8, 1522731.0)
CALL FIRST

C**ELLIPTIC COEFFICIENT INITIAL SOLUTION (N=200, M=25)*

CASE (90)
II - 92
CALL PUTARY( 3, 3, 25.0)
CALL PUTARY( 3, 4, 0.0)
CALL PUTARY( 3, 5, 9.0)
CALL PUTARY( 3, 6, 3853417.0)
CALL PUTARY( 3, 7, 5113297.0)
CALL PUTARY( 3, 8, 1522731.0)
CALL FIRST

133



END SELECT
WRITE(*,10) INT(II/10+1.0),INT(GETARY(3,4)+1.0),

+ INT(GETARY(3, 2) + 1.0)
10 FORMAT(315)

RETURN
END

. 1.4.2 Subroutine FIRST.

$INCLUDE: 'PRCTL.FOR'
SUBROUTINE FIRST

$INCLUDE: 'PARAM.INC'
$ INCLUDE: 'SCOM •.COM'

C** INITIALIZE RESOURCES Ri - R6 **
*** **** *** *** *** ************ ******* ********************

CALL RAN(6,RI)
CALL RAN(6,R2)
CALL RAN(6,R3)
CALL RAN(6,R4)
CALL RAN(6,R5)
CALL RAN(6,R6)
I1 - 3 + INT(R1*2.0)
12 - 3 + INT(R2*2.0)
13 - 3 + INT(R3*2.0)
14 - 3 + INT(R4*2.0)
15 - 3 + INT(R5*2.0)
16 - 3 + INT(R6*2.0)
CALL ALTER(1, I1)
CALL ALTER(2, 12)
CALL ALTER(3, 13)
CALL ALTER(4, 14)
CALL ALTER(5, 15)
CALL ALTER(6, 16)
XX(4) = REAL(I1)
XX(5) = REAL(12)
XX(6) - REAL(13)
XX(7) = REAL(14)
XX(8) = REAL(15)
XX(9) = REAL(16)

**************** ** ** ** ** * ** ************** ******* ******

C** INITIALIZE XX(1) = SAMPLES AND XX(2) = BATCHES **

XX(1) = 0.0
XX(2) = 0.0
XX(3) = 0.0

C** INITIALIZE INCUMBENT AND SOLUTION VALUES **
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CALL PUTARY( 1, 1, 99999.9)
CALL PUTARY( 1, 2, 0.0)
CALL PUTARY( 1, 3, 30.0)
CALL PUTARY( 2, 1, 99999.9)
CALL PUTARY( 2, 2, 0.0)
CALL PUTARY( 2, 3, 30.0)

C** INITIALIZE ARRAY(3,1) - TOTAL RUNS **
C** ARRAY(3,2) - CURRENT RUN **

C RT = 100.0 + 100.0 * INT(GETARY(3, 5)/8)
RT - 200.0
CALL PUTARY( 3, 1, RT)
CALL PUTARY( 3, 2, 0.0)
CALL SETTIM( 0, 0, 0, 0)

RETURN
END

B.1.4.3 Subroutine NEXT.

$INCLUDE: 'PRCTL .FOR'
SUBROUTINE NEXT

$INCLUDE: 'PARAM.INC'
$INCLUDE: 'SCOM •.COM['

C** INITIALIZE INCUMBENT SOLUTION **
C** AND SELECT A RANDOM DIRECTION **

CHARACTER*3 LABEL
10 Ii - INT(GETARY(i, 1))

12 = INT (GETARY(1, 2) )
13 = INT(GETARY(1,3) )
14 = INT(GETARY(1, 4) )
15 - INT(GETARY(1,5))
16 - INT(GETARY(1, 6) )
IF ((Ii + 12 + 13 + 14 + 15 + 16) .LE.24) THEN
IM = INT (DRAND (2) *2)
IM = 2*IM - 1
ELSE
IM - -1
END IF
SELECT CASE (INT(DRAND(2)*6) + 1)
CASE (1)

LABEL = ' RI'
Ii = I1 + IM
IM = II
IMIN = 3
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CASE (2)
LABEL- ' R2'
12 - 12 + IM
IM - 12
IMIN - 2

CASE (3)
LABEL- ' R3'
13 - 13 + IM
IM - 13
IMIN - 2

CASE (4)
LABEL - ' R4'
14 - 14 + IM
IM - 14
IMIN - 2

CASE (5)
LABEL - ' R5'
15 - 15 + IM
IM - 15
IMIN - 2

CASE (6)
LABEL - ' RV'
16 - 16 + IM
IM - 16
IMIN - 2

END SELECT
IF (IM.LT.IMIN) GOTO 10
WRITE(*,20) LABEL
WRITE(*,30) IM

20 FORMAT (A5)
30 FORMAT(I5)

C** INITIALIZE NEIGHBORING SOLUTION **

CALL ALTER(1, I1)
CALL ALTER(2, 12)
CALL ALTER(3, 13)
CALL ALTER(4, 14)
CALL ALTER(5, 15)
CALL ALTER(6, 16)
XX(1) - REAL(I1)
XX(2) - REAL(12)
XX(3) - REAL(13)
XX(4) = REAL(4).
XX(5) - REAL(15)
XX(6) = REAL(16)
RETURN
END
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S. 1.4.4 Subroutine RAN.

$INCLUDE: 'PRCTL .FOR'
SUBROUTINE RAN (IS, R)

$INCLUDE: 'PARAM.INC'
$INCLUDE: 'SCOM1. COM'

REAL Z, R, C, G
C - 4.294967296E+9
Z - GETARY(3, IS)
G 5*Z + 99991
Z - MOD(G,C,
R - Z/C
CALL PUTARY(3, IS, Z)
RETURN
END

B. 1.4.5 Subroutine EVENT.

$INCLUDE: 'PRCTL .FOR'
SUBROUTINE EVENT(I)

$INCLUDE: 'PARAM.INC'
$INCLUDE: 'SCOMI.COM'
C

DIMENSION A(10)
REAL BATCHES, PROBABILITY

C** COLLECT XX(1) SAMPLES AND TOTAL WAIT XX(2) **

IF (TNOW.LT.500.0) RETURN
XX(1) - XX(1) + 1
XX(2) - XX(2) + ATRIB(1)

C** RECORD BATCH MEAN **

IF (XX(1).LT.50) RETURN
WAIT - XX(2)/50
XX(1) = 0.0
XX(2) = 0.0
CALL COLCT(WAIT,1)
BATCHES = CCNUM(1) - 10.0

C** STOP COLLECTING BATCHES WHEN CRITERIA MET: **
C** LESS THAN 100% CHANCE OF ACCEPTANCE OR 30 BATCHES*

IF (BATCHES.LT.0) RETURN
CALL TEST (PROBABILITY)
TERM = PROBABILITY*(1 - BATCHES/31.25)
IF (TERM.LE.0.20) THEN
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CALL ENTER(1,A)
RETURN

END IF
RETURN
END

B.1.4.6 Subroutine TEST.

$INCLUDE: 'PRCTL.FOR'
SUBROUTINE TEST (PT)

$INCLUDE: 'PARAM. INC'
$INCLUDE" 'SCOM1.COM'

REAL RT,RC,T,Y1,S1,N1,Y2,S2,N2, SP,DY,L,PT

C** DELTA FUNCTION **

Y1 - GETARY (1,1)
Y2 - CCAVG(1)
DY - (Y2-YI)

C** CALCULATE PT; THE PROBABILITY OF ACCEPTANCE **

IF (DY.LT.0.0) THEN
PT - 1.0
RETURN

END IF
IT - INT(GETARY(3, 5))

C** ACCEPTANCE FUNCTION **

SELECT CASE(IT)
CASE (0, 5)

PT - 0.0
RETURN

CASE (1, 6)
RT - GETARY(3, 1)
RC - GETARY(3, 2)
T - 0.67 * (RT - RC) / RT
PT - EXP(-DY/T)
RETURN

CASE (2, 7)
RT - GETARY(3, 1)
RC = GETARY(3, 2)
S - GETARY(1,2) + 0.0001
Ni - GETARY(1,3)
S2 - CCSTD(1) + 0.0001
N2 - CCNUM(1)
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SP - SQRT( ((Nl-1)*S1**2+(N2-1)*S2**2)/(N1+N2.-2))
T - 0.22 * SP * (RT -- RC) IRT
PT - EXP(-DYIT)
RETURN

CASE (3)
RT - GETARY(3, 1)
RC - GETARY(3, 2)
T - 1.71/LOG(RC + 1.0)
L - (RT - RC)/RT
PT - L*EXP (-DY/T)
RETURN

CASE (4)
RT - GETARY(3, 1)
RC - GETARY(3, 2)
T - 1.38/LOG(RC + 1.0)
L - SQRT(1 - RC**2/RT**2)
PT - L*EXP (-DY/T)
RETURN

CASE (8)
RT - GETAPLY(3, 1)
RC - GETARY(3, 2)
T - 2.O1/LOG(RC + 1.0)
L - (RT - RC)/RT
PT - L*EXP(-DY/T)
RETURN

CASE (9)
RT - GETARY(3, 1)
RC - GETARY(3, 2)
T - 1.621L0G(RC + 1.0)
L - SQRT(1 - RC**2/RT**2)
PT - L*EXP(-DY/T)
RETURN

END SELECT
END

S. 1.4.7 Subroutine 0OTPUTf.

$INCLUDE: 'PRCTL .FOR'
SUBROUTINE OTPUT

$INCLUDE: 'PARAM.INCI
$INCLUDE: 'SCOMi .COM'

REAL YC, YI, YB, RT, RC, PT, PC, SC, ST

C** INCREMENT THE NUMBER OF RUNS *

C** RETRIEVE YC AND YI SOLUTIONS *
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RT - GETARY(3, 1)
RC - GETARY(3, 2)
CALL TEST (PT)
RC - RC + 1.0
CALL PUTARY(3, 2, RC)
CALL RAN(8,PC)
YC - CCAVG(1)
YI - GETARY(1, 1)
YB - GETARY(2, 1)

C** YC IS LESS THAN PREVIOUS YB SOLUTION **

IF (YC.LT.YB) THEN
CALL PUTARY (3, 9, AG)
CALL PUTARY(3, 10, Al)
CALL PUT(1)
CALL PUT(2)
GOTO 100

END IF

C** YC IS LESS THAN YI SOLUTION **
**************** * ****** **** **** **** ****** *****

IF (PT.EQ.1) THEN
CALL PUTARY(3, 9, AO)
CALL PUTARY(3, 11, A2)
CALL PUT(1)
GOTO 100

END IF

C** DETERMINE ACCEPTANCE OF A MOVE AWAY FROM OPTIMUM *
C** COMPARE THE PC AGAINST PT OF ACCEPTANCE **

* * *** ** ** ** * ** ******************** ********************

IF (PC.LT.PT) THEN
CALL PUTARY(3, 9, AO)
CALL PUTARY(3, 12, A3)
CALL PUT(i)

END IF

C** ANNEALING COMPLETE, START FROM NEW SOLUTION **

100 IF (RC.LT.RT) RETURN
II - II - 1
ST - GETARY(3, 3)
SC -= GETARY(3, 4) + 1.0
CALL PUTARY(3, 4, SC)
CALL OUT

C** TEST COMPLETE, START NEW TEST **
******* ********************* *************************

IF (SC.LT.ST) RETURN
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II-II + 9

C** PROBLEM COMPLETE *

IF (II.LT.100) RETURN
WRITE(*,*) -TYPE ENTER TO CONTINUE'
READ (*
STOP
END

B. 1.4.8 Subroutine PUT.

$ INCLUDE: 'PRCTL .FOR'
SUBROUTINE PUT (Il)

$DICLUDE: 'PARAM.INC'
$INCLUDE: 'SCOMi .COM'

CALL PUTARY(I1, 1, CCAVG(1))
CALL PUTARY(I1, 2, CCSTD(1))
CALL PUTARY(I1, 3, CCNUM(1))
CALL PUTARY(I1, 4, XX(4))
CALL PUTARY(I1, 5, XX(5))
CALL PUTARY(I1, 6, XX(6))
CALL PUTARY(Il, 7, XX(7))
CALL PUTARY(Il, 8, XX(8))
CALL PUTARY(11, 9, XX(9))
RETURN
END

B. 1.4.9 Subroutine OUT.

$INCLUDE: 'PRCTL.FOR'
SUBROUTINE OUT

$INCLUDE: 'PARAM.INC'
$ INCLUDE: 'SCOMi .COM'

CALL TIME(RTIME)
IT = INT(RTIME)
IA = INT(II/1O) + 1
IS = INT(GETARY(3, 4))
IR = INT(GETARY(3, 2))
OPEN (UNIT= 8,ACCESS='APPEND' ,FILE='VAL2 .DOC')
OPEN (UNIT= 9,ACCESS= 'APPEND', FILE=' SOL2 .DAT')
OPEN (UNIT=1O,ACCESS='APPEND' ,FILE='REC2 .DOC')
WRITE(8, 10) IA, '',IS,''

* INT(GETARY(2,4)) ,'',INT(GETARY(2,5)) ,''

* INT(GETARY(2,6)) ,'',INT(GETARY(2,7)) ,'',

* INT(GETARY(2,8)) ,'',INT(GETARY(2,9))

10 FORMAT(I5, Al, 15, Al
* 15, Al, 15, Al,
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"+ 15, Al, I5, Al,
"+ 15, Al, 15)
WRITE(9, 20) IA,,',I,',',I , , ,

+ IR , I,' , GETARY(2,1) GETARY(2,2)
20 FORMAT(I5, Al, 15, Al, 15, Al,

+ 15, Al, F5.2, Al, F5.2, Al)
WRITE(10, *) IA, IS
WRITE(10, *) GETARY(3, 6)
WRITE(10, *) GETARY(3, 7)
WRITE(10, *) GETARY(3, 8)
CLOSE(UNIT - 8, STATUS - 'KEEP')
CLOSE(UNIT - 9, STATUS - 'KEEP')
CLOSE(UNIT -10, STATUS = 'KEEP')

RETURN
END

B. 1.4.10 Subroutine TIME.

C** RETURNS SYSTEM TIME IN SECONDS **

SUBROUTINE TIME (RTIME)
REAL RTIME
CALL GETTIM(IHR, IMIN, ISEC, II00TH)
RTIME - 3600*REAL (IHR) +60*REAL (IMIN) +REAL(ISEC) +

+ REAL(IlOOTH)/i00.0
RETURN
END

B.2 Optimal Solution.

The configuration space generated by the six decision variables is too large to

completely enumerate the response values. There is no theoretical basis at present for

determining what the optimum configuration should be. The only alternative left is to sort

through all of the solutions obtained and pick the most optimal value. Since this is a

minimization problem the, the lowest value found is used as the optimum response value.

The lowest value is found to be 1.48 and this is used in calculating the solution quality.
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8.3 Data.

8.3.1 Comparing the Alternatives.

Linear Temperature Solution Quality at 100 Trials

Run R1 R2 R3 R4 R5 R6

1 5 5 4 3 3 5 1.11
2 4 7 4 3 4 3 5.50
3 6 4 4 5 3 3 .43
4 6 5 4 4 2 4 .79
5 6 6 4 3 3 3 .08
6 6 4 5 4 3 3 .23
7 6 4 4 5 3 3 .43
8 7 4 5 3 3 3 .00
9 4 4 4 3 4 3 6.24

10 4 4 5 3 3 6 5.95
11 6 5 5 3 3 3 .06
12 6 5 5 3 3 3 .06
13 6 4 3 3 4 5 3.33
14 6 6 4 3 3 3 .08
15 6 4 4 4 4 3 .76
16 7 5 3 4 3 3 2.39
17 6 4 5 4 4 2 1.30
18 6 4 4 5 2 4 1.24
19 6 5 5 3 3 3 .06
20 5 4 3 4 3 6 4.63
21 6 5 4 3 4 3 .29
22 6 6 4 3 3 3 .08
23 7 3 5 4 3 3 2.84
24 7 5 4 3 3 3 .26
25 6 4 5 4 3 3 .23
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Adaptive Temperature Solution Quality at 100 Trials

Run RI R2 R3 R4 R5 R6
1 5 5 4 3 3 5 1.11
2 7 4 5 3 3 3 .00
3 7 3 4 3 3 5 3.55
4 5 6 4 3 3 4 .86
5 6 5 4 3 4 3 .29
6 6 4 5 3 3 3 .58
7 6 4 5 4 3 3 .23
8 6 4 4 5 3 3 .43
9 5 4 4 5 5 2 2.72
10 4 6 4 4 4 3 5.30
11 7 5 4 3 3 3 .26
12 6 4 5 4 3 3 .23
13 6 4 4 3 4 4 172
14 5 4 4 3 3 5 A d9

15 6 5 5 4 2 3 .78
16 5 5 6 3 3 3 .68
17 5 4 5 4 3 3 .85
18 3 3 3 3 2 5 87.46
19 6 4 5 4 3 3 .23
20 6 4 5 4 3 3 .23
21 6 4 5 5 3 2 1.90
22 5 4 4 3 6 2 3.77
23 5 8 3 4 2 3 4.11
24 5 5 5 3 3 4 1.05
25 6 4 5 4 3 3 .23
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Linear Coefficient Solution Quality at 100 Trials

Run RI R2 R3 R4 R5 R6
1 5 4 5 4 2 5 2.17
2 5 4 5 4 3 4 .65
3 7 4 5 3 3 3 .00
4 6 4 5 4 3 3 .23
5 6 4 4 3 4 4 1.22
6 7 5 4 3 3 3 .26
7 6 4 4 5 3 3 .43
8 4 5 5 6 2 3 5.23
9 6 4 4 4 4 3 .76

1o 4 6 4 5 3 3 5.33
11 5 5 4 3 3 5 1.11
12 5 5 6 3 3 3 .68
13 7 5 4 3 3 3 .26
14 6 5 5 3 3 3 .06
15 5 3 4 3 4 6 4.34
16 6 5 4 3 4 3 .29
17 5 3 6 2 6 3 "5.26
18 5 4 4 6 2 4 3.01
19 9 4 4 2 3 3 1.65
20 5 3 4 3 3 7 4.99
21 7 5 4 3 2 4 1.26
22 5 5 6 3 3 3 .68
23 6 6 4 3 3 3 .08
24 4 6 3 4 4 4 7.53
25 5 5 4 3 3 5 1.11
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Elliptic Coefficient Solution Quality at 100 Trials

Run RI R2 R3 R4 R5 R6
1 5 4 4 3 3 6 1.79
2 6 5 4 3 4 3 .29
3 6 4 5 4 3 3 .23
4 6 6 4 3 3 3 .08
5 6 6 4 3 3 3 .08
6 6 3 4 4 5 2 4.47
7 6 4 4 5 3 3 .43
8 5 4 4 5 2 5 2.54
9 7 4 4 3 3 4 .87

10 4 4 4 5 3 5 6.29
11 6 4 5 4 3 3 .23
12 6 4 4 5 3 3 .43
13 6 4 3 5 3 3 3.89
14 5 5 4 4 3 4 1.08
15 7 4 5 3 3 3 .00
16 4 4 4 3 4 5 6.02
17 6 5 5 3 3 3 .06
18 6 4 3 3 4 3 3.46
19 5 4 3 4 2 7 6.12
20 6 4 5 3 3 4 .41
21 7 5 4 2 4 3 1.25
22 5 3 4 5 5 2 5.71
23 5 4 4 5 4 3 1.83
24 7 5 3 4 3 3 2.39
25 6 4 4 4 3 4 .70

146



Linear Temperature Solution Quality at 200 Trials

Run R1 R2 R3 R4 R5 R6
1 6 5 5 3 3 3 .06
2 7 4 5 3 3 3 .00
3 6 4 5 3 4 3 .45
4 6 6 4 3 3 3 .08
5 5 4 5 4 3 4 .65
6 5 5 5 3 4 3 .68
7 7 5 4 3 3 3 .26
8 7 4 5 3 3 3 .00
9 7 4 5 3 3 3 .00

10 7 5 4 3 3 3 .26
11 7 4 5 3 3 3 .00
12 6 4 5 4 3 3 .23
13 6 6 4 3 3 3 .08
14 7 4 5 3 3 3 .00
15 6 4 5 4 3 3 .23
16 6 4 5 4 3 3 .23
17 6 4 4 5 3 3 .43
18 7 5 4 3 3 3 .26
19 7 4 4 3 4 3 .45
20 6 6 4 3 3 3 .08
21 6 4 5 4 3 3 .00
22 6 4 5 4 3 3 .00
23 6 4 5 4 3 3 .00
24 8 4 4 3 3 3 .00
25 6 5 4 4 3 3 .85
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Adaptive Temperature Solution Quality at 200 Trials

Run RI R2 R3 R4 R5 R6
1 7 4 5 3 3 3 .00
2 6 5 5 3 3 3 .06
3 6 5 5 3 3 3 .06
4 6 4 5 4 3 3 .23
5 7 4 5 3 3 3 .00
6 5 5 4 4 3 4 1.08
7 6 4 4 2 6 3 1.92
8 6 5 5 3 3 3 .06
9 6 5 4 3 4 3 .29

10 6 5 4 3 4 3 .29
11 7 4 5 3 3 3 .00
12 7 4 5 3 3 3 .00
13 7 4 5 3 3 3 .00
14 6 4 5 4 3 3 .23
15 6 5 5 3 3 3 .06
16 5 4 4 6 3 3 1.97
17 6 5 5 3 3 3 .06
18 6 6 4 3 3 3 .08
19 6 4 5 4 3 3 .23
20 6 4 3 3 6 3 3.01
21 6 5 5 3 3 3 .06
22 6 4 5 4 3 3 .23
23 6 4 4 5 3 3 .43
24 6 4 4 5 3 3 .43
25 7 4 5 3 3 3 .00
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Linear Coefficient Solution Quality at 200 Trials

Run RI R2 R3 R4 R5 R6

1 6 5 5 3 3 3 .06
2 6 4 5 3 3 4 .41
3 6 6 4 3 3 3 .08
4 6 4 4 5 3 3 .43
5 6 4 5 4 3 3 .23
6 6 5 4 3 4 3 .29
7 6 5 5 3 3 3 .06
8 7 4 5 3 3 3 .00
9 6 4 5 4 3 3 .23

10 7 6 4 3 2 3 .82
11 6 4 5 4 3 3 .23
12 8 4 4 3 3 3 .58
13 7 4 5 3 3 3 .00
14 5 5 5 3 4 3 .68
15 6 5 5 3 3 3 .06
16 5 4 5 4 3 4 .65
17 6 6 4 3 3 3 .08
18 5 5 4 3 4 4 1.14
19 7 5 4 3 3 3 .26
20 6 6 4 3 3 3 .08
21 6 5 5 3 3 3 .06
22 6 4 5 3 4 3 .45
23 6 6 4 3 3 3 .08
24 7 4 5 3 3 3 .00
25 6 4 4 4 3 4 .70
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Elliptic Coefficient Solution Quality at 200 Trials

Run Ri R2 R3 R4 R5 R6
1 5 6 4 3 3 4 .86
2 7 5 4 3 3 3 .26
3 7 4 5 3 3 3 .00
4 6 5 5 3 3 3 .06
5 6 4 5 4 3 3 .23
6 7 4 5 3 3 3 .00
7 7 4 5 3 3 3 .00
8 6 4 5 4 3 3 .23
9 6 6 4 3 3 3 .08

10 6 5 4 4 2 4 .79
11 7 4 5 3 3 3 .00
12 7 5 4 3 3 3 .26
13 7 4 5 2 3 4 1.44
14 6 5 5 3 3 3 .06
15 6 5 5 3 3 3 .06
16 7 4 5 3 3 3 .00
17 6 5 5 3 3 3 .06
18 7 5 4 3 3 3 .26
19 7 4 5 3 3 3 .00
20 7 4 5 3 3 3 .00
21 6 5 4 4 2 4 .79
22 5 5 5 3 4 3 .68
23 6 4 5 4 3 3 .23
24 6 5 4 3 4 3 .29
25 6 4 5 4 3 3 .23
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B.3.2 Comparing Local Search.

Local Search Efficiency (1 Iteration)

Run Moves Best Moves Other Moves CPU Time
Accepted

1 12 12 0 702.00
2 7 7 0 416.00
3 4 4 0 331.00
4 5 5 0 315.00
5 10 10 0 619.00
6 9 9 0 585.00
7 4 4 0 331.00
8 6 6 0 351.00
9 4 4 0 287.00

10 8 8 0 513.00
11 6 6 0 333.00
12 7 7 0 504.00
13 10 10 0 670.00
14 5 5 0 341.00
15 4 4 0 330.00
16 9 9 0 534.00
17 11 11 0 661.00
18 9 9 0 640.00
19 7 7 0 504.00
20 10 10 0 671.00
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Local Search Efficiency (1 Iteration)

Run Moves Best Moves Other Moves CPU Time
Accepted

21 10 10 0 631.00
22 12 12 0 703.00
23 11 11 0 686.00
24 5 5 0 366.00
25 7 7 0 423.00
26 10 10 0 630.00
27 10 10 0 630.00
28 4 4 0 331.00
29 5 5 0 329.00
30 6 6 0 412.00
31 7 7 0 504.00
32 7 7 0 415.00
33 6 6 0 392.00
34 6 6 0 396.00
35 10 10 0 619.00
36 5 5 0 315.00
37 7 7 0 416.00
38 10 10 0 562.00
39 3 3 0 261.00
40 7 7 0 423.00
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Local Search Solution Quality (1 Iteration)

Run RI R2 R3 R4 R5 R6
1 6 4 5 4 3 3 .42
2 9 4 4 2 3 3 2.02
3 6 4 4 3 4 4 1.25
4 7 4 4 3 4 3 .91
5 6 4 7 2 3 3 1.91
6 6 4 7 2 3 3 1.91
7 6 4 4 3 4 4 1.25
8 7 4 4 3 3 4 .90
9 7 4 4 3 4 3 .91

10 5 5 4 4 3 4 1.40
11 7 5 4 3 3 3 .33
12 6 4 5 4 3 3 .42
13 6 4 6 2 3 4 1.90
14 5 5 4 4 3 4 1.40
15 6 4 4 3 4 4 1.25
16 6 5 5 4 2 3 .92
17 6 4 7 2 3 3 1.91
18 6 4 6 2 3 4 1.90
19 6 4 5 4 3 3 .42
20 64 6 2 3 4
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Local Search Solution Quality (1 Iteration)

Run RI R2 R3 R4 R5 R6
21 6 4 7 2 3 3 1.91
22 6 4 5 4 3 3 .42
23 6 4 5 4 3 3 .42
24 6 4 4 3 4 4 1.25
25 6 4 5 3 4 3 .36
26 6 4 7 2 3 3 1.91
27 6 4 7 2 3 3 1.91
28 6 4 4 3 4 4 1.25
29 7 5 3 3 3 4 2.00
30 8 4 4 2 3 4 2.09
31 6 4 5 4 3 3 .42
32 9 4 4 2 3 3 2.02
33 6 4 5 3 4 3 .36
34 6 4 5 3 4 3 .36
35 6 4 7 2 3 3 1.91
36 7 4 4 3 4 3 .91
37 9 4 4 2 3 3 2.02
38 6 5 5 4 2 3 .92
39 6 4 4 4 3 'K .80
40 6 4 5 3 4 3 .36
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Local Search Efficiency (5 Iterations)

Run Moves Best Moves Other Moves CPU Time
Accepted

1 12 12 0 2383.00
2 7 7 0 2067.00
3 4 4 0 2178.00
4 5 5 0 3010.00
3 10 10 0 2809.00
6 9 9 0 2332.00
7 4 4 0 2326.00
8 6 6 0 1977.00

Local Search Solution Quality (5 Iterations)

Run RI R2 R3 R4 905 R6 8i
1 6 4 5 4 3 3 .42
2 9 4 4 2 3 3 .90
3 6 4 4 3 4 4 .33
4 7 4 4 3 4 3 .42
5 6 4 7 2 3 3 .36
6 6 4 7 2 3 3 1.25
7 6 4 4 3 4 4 .36
8 7 4 4 3 3 4 .36
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Simulated Annealing with Linear Temperature Efficiency (1 Iteration)

Run Moves Best Moves Other Moves CPU Time
Accepted

1 66 16 50 2473.00
2 65 8 57 2358.00
3 42 7 35 2311.00
4 45 8 37 2100.00
5 34 12 22 2193.00
6 39 12 27 2211.00
7 72 12 60 2358.00
8 64 10 54 2475.00
9 48 5 43 2213.00

10 74 13 61 2517.00

Simulated Annealing with Linear Temperature Solution Quality (1 Iteration)

Run RI R2 R3 R4 R5 R6 8i
1 6 4 5 4 3 3 .06
2 7 5 4 3 3 3 00
3 8 5 3 2 3 3 .45
4 6 6 4 3 3 3 .08
5 6 4 7 2 3 3 .65
6 6 4 7 2 3 3 .68
7 7 5 4 2 3 4 .26
8 8 4 4 3 3 3 .00
9 8 4 4 3 3 3 .00

10 5 5 4 4 3 4 .26
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Simulated Annealing with Logarithmic Temperature and
Elliptic Coefficient Efficiency (1 Iteration)

Run Moves Best Moves Other Moves CPU Time
Accepted

1 72 15 57 2332.00
2 49 7 42 2156.00
3 76 10 66 2362.00
4 65 10 55 2180.00
5 66 11 55 2331.00
6 61 9 52 2349.00
7 54 13 41 2181.00
8 54 7 47 2349.00
9 44 6 38 2105.00

10 58 10 48 2191.00

Simulated Annealing with Logarithmic Temperature and
Elliptic Coefficient Solution Quality (1 Iteration)

Run RI R2 R3 R4 R5 R6 81
1 6 6 4 3 3 3 .86
2 8 4 4 3 3 3 .26
3 7 5 4 3 3 3 .00
4 6 5 5 3 3 3 .06
5 8 5 4 2 3 3 .23
6 9 4 4 2 3 3 .00
7 8 6 4 2 2 3 .00
8 6 4 5 4 3 3 .23
9 7 5 4 2 4 3 .08

10 6 5 5 3 3 3 .79
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C. I Scenario

The network model shows the segmentation of the machine stations, the processing

time distributions for each station, and the transition probabilities between stations. The

model consists of nine segments. The first segment defines the decision variables RI

(where I represents the numbers 1 through 6), the number of resources available at each

station. Although the model initializes the number of machines per station to zero, a user

insert alters the number according to each trial configuration. The second segment models

the arrival of parts to the job-shop using an exponential distribution with an average inter-

arrival rate of one part every five seconds. Segments three through eight model the

machine stations using identical logic. As each part arrives at a station, it is "tagged" with

the time TNOW using ATRIB(2). When a machine becomes available to process that

part, the waiting time spent at the station is added to ATRLB(1). Processing time for each

machine is exponentially distributed with an average of five seconds. After this processing,

the part is routed probabilistically to the next station as indicated in Figure 3.5. The

shipment from one station to the next occurs with an exponential distribution at an

average of two seconds. Stations one through five all have two transition probabilities;

each probability equal to 50%. Station six has a 100% transition probability. Segment

nine collects the statistics on the overall waiting time through the EVENT statement,

linking to a user insert. Once enough samples have been collected for a given simulation

run, the user insert enters an entity into the model which then terminates the simulation.

The network models uses generic structures: the XX(I) array represents decision variables

and the ARRAY(IJ) array represents control parameters. The generic structure of the

network model facilitates the transfer of control to the user inserts.
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C. 1.1 Scenario Definiton.

Scenario:
SCE 1
Control:
CONT
Network:
NET2
Script:
Facility:
User Insert:
EVENT2
FIRST2
INTLC
NEXT2
OTPUT
OUT2
PUT2
RAN
TEST2
T IME
Notes:
Data:
Curchange:
00000000
Definition:

C. 1.2 Control Statements.

GEN,WARRENDER,MA.CHINES,7/20/93,100000,N,N,Y/N,N,N/1,72;
LIMITS, 6,2,500;
STAT, 1,WAIT TIME;
SEEDS, 8653713 (10) /Y, 6470899 (9) /Y, 4286515 (8) /Y,
4399739 (7) /Y, 6475819 (6) /Y, 9113213 (5) /Y, 8126355 (4) IY,
2734681 (3) IY, 6315779 (2) /Y, 9375295 (1) /Y;
ARRAY ( 1, 2 1);
ARRAY (2, 2 1);
ARRAY (3, 2 1);
NETWORK(;
INITIALIZE, ,1000000, Y;
FIN;
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C. 1.3 Network Mlodel.

RESOURCE/1,R1 (0),1;
RESOURCE/2,R2 (0) ,2;
RESOURCE/3,R3 (0) 13;

RESOURCE/4,R4 (0) ,4;
RESOURCE/5,R5 (0) ,5;
RESOURCE/6, R6 (0),6;

INPUT CREATE,EXPON(5,2) ...30,1;
IN ASSIGN,ATRIB(1)-0.0,1;

ACTIVITY .. ,Al;

Al ASSIGN,ATRIB(2)-TNOW, 1;
AWAIT(1) ,Rl,, 1;
ASSIGN,ATRIB(1)-ATRIB(1)+TNOW-ATRIB(2), 1;
ACTIVITY/1,EXPON(5, 3), ,F1;

Fl FREE,R1/l,1;
ACTIVITY/12,EXPON(2,9) ,0.5,A2;
ACTIVITY/13,EXPON(2, 10) ,0.5,A3;

A2 ASSIGN,ATRIB(2)-TNOW, 1;
AWAIT (2) ,R2,, 1;
ASSIGN,ATRIB(1)-ATRIB(1)+TNOW-ATRIB(2) ,1;
ACTIVITY/2,EXPON(5,4) ,,F2;

F2 FREE,R2/1,1;
ACTIVITY/21,EXPON (2,9) ,0.5,A1;
ACTIVITY/24,EXPON(2,10) ,0.5,A4;

A3 ASSIGN,ATRIB(2)-TNOW, 1;
AWAIT(3) ,R3,, 1;
ASSIGN,ATRIB(1)-ATRIB(1)+TNOW-ATRIB(2),1;
ACTIVITY/3,EXPON(5,5) ,,F3;

F3 FREE,R3/1,1;
ACTIVITY/31,EXPON (2, 9) ,0.S,A1;
ACTIVITY/35,EXPON(2, 10), 0.5,A5;

A4 ASSIGN,ATRIB(2)-TNOW, 1;
AWAIT(4) ,R4,, 1;
ASSIGN,ATRIB(1)-ATRIB(1)+TNOW-ATRIB(2), 1;
ACTIVITY/4,EXPON (5, 6), ,F4;

F4 FREE,R4/1,1;
ACTIVITY/42,EXPON (2, 9), 0.5,A2;
ACTIVITY/46, EXPON (2,10), 0.5,A6;

AS ASSIGN,ATRIB(2)-TNOW, 1;
AWAIT (5) ,R5,, 1;
ASSIGN,ATRIB(1)-ATRIB(1) +TNOW-ATRIB(2) , ;
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ACTIVITY/5,EXPON (5, 7), ,F5;
F5 FREE,R5/l,1;

ACTIVITY/53,EXPON (2,9), 0.5,A3;
ACTIVITY/56,EXPON(2,1O) ,O.5,A6;

A6 ASSIGN, ATRIB (2)-TNOW, 1;
AWAIT(6) ,R6, ,l;
ASSIGN,ATRIB(l)-ATRIB(1)+TNOW-ATRIB(2) ,l;
ACTIVITY/6,EXPON(5,8) ,,F6;

F6 FREE, R6 /1, 1;
ACTIVITY, ...El;

El EVENT,l,l;
ACTIVITY,... IN;

ENTER, 1,1;
ACTIVITY, ...END;

END TERMINATE, 1;
END;
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C. 1.4 User Inserts.

C. 1.4.1 Subroutine INTLC.

$INCLUDE: 'PRCTL.FOR'

C** ANNEALING ROUTINE CONTROL **

SUBROUTINE INTLC
$INCLUDE: 'PARAM.INC'
$INCLUDE: 'SCOM1.COM'

SELECT CASE (II)
****** * ****** ****************** ************************

C** NEIGHBORING SOLUTIONS **

CASE (2, 12, 22, 32, 42, 52, 62, 72, 82, 92)
CALL NEXT

C** NEW INITIAL SOLUTIONS **

CASE (1, 11, 21, 31, 41, 51, 61, 71, 81, 91)
II - II + 1

CALL FIRST

C** LOCAL SEARCH INITIAL SOLUTION (N=100, M-25) **

CASE (0)
II - 2
CALL PUTARY( 3, 3, 25.0)
CALL PUTARY( 3, 4, 0.0)
CALL PUTARY( 3, 5, 0.0)
CALL PUTARY( 3, 6, 3853417.0)
CALL PUTARY( 3, 7, 5113297.0)
CALL PUTARY( 3, 8, 1522731.0)
CALL FIRST

C*GEOMETRIC TEMPERATURE INITIAL SOLUTION (N=100, M=25)*

CASE (10)
II = 12
CALL PUTARY( 3, 3, 25.0)
CALL PUTARY( 3, 4, 0.0)
CALL PUTARY( 3, 5, 1.0)
CALL PUTARY( 3, 6, 3853417.0)
CALL PUTARY( 3, 7, 5113297.0)
CALL PUTARY( 3, 8, 1522731.0)
CALL FIRST
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C** LINEAR TEMPERATURE INITIAL SOLUTION (N-100, M-25)*

CASE (20)
II - 22
CALL PUTARY( 3, 3, 25.0)
CALL PUTARY( 3, 4, 0.0)
CALL PUTARY( 3, 5, 2.0)
CALL PUTARY( 3, 6, 3853417.0)
CALL PUTARY( 3, 7, 5113297.0)
CALL PUTARY( 3, 8, 1522731.0)
CALL FIRST

C**ADAPTIVE TEMPERATURE INITIAL SOLUTION (N-100, M-25)*
********************************** * ***** *

CASE (30)
II - 32
CALL PUTARY( 3, 3, 25.0)
CALL PUTARY( 3, 4, 0.0)
CALL PUTARY( 3, 5, 3.0)
CALL PUTARY( 3, 6, 3853417.0)
CALL PUTARY( 3, 7, 5113297.0)
CALL PUTARY( 3, 8, 1522731.0)
CALL FIRST

C**ELLIPTIC TEMPERATURE INITIAL SOLUTION (N-100, M-25)*

CASE (40)
II - 42
CALL PUTARY( 3, 3, 25.0)
CALL PUTARY( 3, 4, 0.0)
CALL PUTARY( 3, 5, 4.0)
CALL PUTARY( 3, 6, 3853417.0)
CALL PUTARY( 3, 7, 5113297.0)
CALL PUTARY( 3, 8, 1522731.0)
CALL FIRST

CLOGARITHMIC TEMPERATURE INITIAL SOLUTION (N-100, M=25)

CASE (50)
II = 52
CALL PUTARY( 3, 3, 25.0)
CALL PUTARY( 3, 4, 0.0)
CALL PUTARY( 3, 5, 5.0)
CALL PUTARY( 3, 6, 3853417.0)
CALL PUTARY( 3, 7, 5113297.0)
CALL PUTARY( 3, 8, 1522731.0)
CALL FIRST
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C** ** *** ****** ** ************************ ** **** *********

C** LINEAR COEFFICIENT INITIAL SOLUTION (N-100, M-25)**

CASE (60)
II - 62
CALL PUTARY( 3, 3, 25.0)
CALL PUTARY( 3, 4, 0.0)
CALL PUTARY( 3, 5, 6.0)
CALL PUTARY( 3, 6, 3853417.0)
CALL PUTARY( 3, 7, 5113297.0)
CALL PUTARY( 3, 8, 1522731.0)
CALL FIRST

**************************** **** ********** * *

C**ELLIPTIC COEFFICIENT INITIAL SOLUTION (N-100, M-25)*

CASE (70)
II - 72
CALL PUTARY( 3, 3, 25.0)
CALL PUTARY( 3, 4, 0.0)
CALL PUTARY( 3, 5, 7.0)
CALL PUTARY( 3, 6, 3853417.0)
CALL PUTARY( 3, 7, 5113297.0)
CALL PUTARY( 3, 8, 1522731.0)
CALL FIRST

C** LOCAL SEARCH INITIAL SOLUTION (N-200, M-25) **

CASE (80)
II - 82
CALL PUTARY( 3, 3, 25.0)
CALL PUTARY( 3, 4, 0.0)
CALL PUTARY( 3, 5, 8.0)
CALL PUTARY( 3, 6, 3853417.0)
CALL PUTARY( 3, 7, 5113297.0)
CALL PUTARY( 3, 8, 1522731.0)
CALL FIRST

C*GEOMETRIC TEMPERATURE INITIAL SOLUTION (N-200, M-=25)*

CASE (90)
II - 92
CALL PUTARY( 3, 3, 25.0)
CALL PUTARY( 3, 4, 0.0)
CALL PUTARY( 3, 5, 9.0)
CALL PUTARY( 3, 6, 3853417.0)
CALL PUTARY( 3, 7, 5113297.0)
CALL PUTARY( 3, 8, 1522731.0)
CALL FIRST
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C** LINEAR TEMPERATURE INITIAL SOLUTION (N-200, M-25)*

CASE (100)
II - 102
CALL PUTARY( 3, 3, 25.0)
CALL PUTARY( 3, 4, 0.0)
CALL PUTARY( 3, 5, 102.0)
CALL PUTARY( 3, 6, 3853417.0)
CALL PUTARY( 3, 7, 5113297.0)
CALL PUTARY( 3, 8, 1522731.0)
CALL FIRST

C**ADAPTIVE TEMPERATURE INITIAL SOLUTION (N-200, M-25)*

CASE (110)
II - 112
CALL PUTARY( 3, 3, 25.0)
CALL PUTARY( 3, 4, 0.0)
CALL PUTARY( 3, 5, 11.0)
CALL PUTARY( 3, 6, 3853417.0)
CALL PUTARY( 3, 7, 5113297.0)
CALL PUTARY( 3, 8, 1522731.0)
CALL FIRST

C**ELLIPTIC TEMPERATURE INITIAL SOLUTION (N-200, M-25)*
********** ** **************** ***************************

CASE (120)
II - 122
CALL PUTARY( 3, 3, 25.0)
CALL PUTARY( 3, 4, 0.0)
CALL PUTARY( 3, 5, 12.0)
CALL PUTARY( 3, 6, 3853417.0)
CALL PUTARY( 3, 7, 5113297.0)
CALL PUTARY( 3, 8, 1522731.0)
CALL FIRST

** * ** * ******************* ** ** ** ** * *** * ** ** ****** ** ** *

CLOGARITHMIC TEMPERATURE INITIAL SOLUTION (N=200, M-25)
* ** ** ** *** * ** ** *** ** * ** * * *****************************

CASE (130)
II = 132
CALL PUTARY( 3, 3, 25.0)
CALL PUTARY( 3, 4, 0.0)
CALL PUTARY( 3, 5, 13.0)
CALL PUTARY( 3, 6, 3853417.0)
CALL PUTARY( 3, 7, 5113297.0)
CALL PUTARY( 3, 8, 1522731.0)
CALL FIRST
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C** LINEAR COEFFICIENT INITIAL SOLUTION (N-200, M-25)**

CASE (140)
II - 142
CALL PUTARY( 3, 3, 25.0)
CALL PUTARY( 3, 4, 0.0)
CALL PUTARY( 3, 5, 14.0)
CALL PUTARY( 3, 6, 3853417.0)
CALL PUTARY( 3, 7, 5113297.0)
CALL PUTARY( 3, 8, 1522731.0)
CALL FIRST

* ****************************** ******************** ***

C**ELLIPTIC COEFFICIENT INITIAL SOLUTION (N-200, M-25)*

CASE (150)
II - 152
CALL PUTARY( 3, 3, 25.0)
CALL PUTARY( 3, 4, 0.0)
CALL PUTARY( 3, 5, 15.0)
CALL PUTARY( 3, 6, 3853417.0)
CALL PUTARY( 3, 7, 5113297.0)
CALL PUTARY( 3, 8, 1522731.0)

*************** *** ** * *** ** * *************************** *

END SELECT
WRITE(*,10) INT(II/10+1.0)LINT(GETARY(3,4)+1.0),

+ INT(GETARY(3, 2) + 1.0)
10 FORMAT(315)

RETURN
END

C.1.4.2 Subroutine FIRST.

$INCLUDE: 'PRCTL.FOR'
SUBROUTINE FIRST

$INCLUDE: 'PARAM.INC'
$INCLUDE: 'SCOM1.COM'C******************************************************
C** INITIALIZE RESOURCES RI - R6 **
**** ********************************************* **** *

CALL RAN(6,R1)
CALL RAN(6,R2)
CALL RAN(6,R3)
CALL RAN(6,R4)
CALL RAN(6,R5)
CALL RAN(6,R6)
I1 = 3 + INT(R1*2.0)
12 = 3 + INT(R2*2.0)
13 = 3 + INT(R3*2.0)
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14 - 3 + INT(R4*2.0)
15 - 3 + INT(R5*2.0)
16 - 3 + INT(R6*2.0)
CALL ALTER(l, I1)
CALL ALTER(2, 12)
CALL ALTER(3, 13)
CALL ALTER(4, 14)
CALL ALTER(5, 15)
CALL ALTER(6, 16)
XX(4) - REAL(I1)
XX(5) - REAL(12)
XX(6) - REAL(13)
XX(7) - REAL(14)
XX(8) - REAL(15)
XX(9) - REAL(I6)

C** INITIALIZE XX(1) - SAMPLES AND XX(2) - BATCHES**

XX(1) - 0.0
XX(2) - 0.0
XX(3) - 0.0

C** INITIALIZE INCU.1BENT AND SOLUTION VALUES **

CALL PUTARY( 1, 1, 99999.9)
CALL PUTARY( 1, 2, 0.0)
CALL PUTARY( 1, 3, 30.0)
CALL PUTARY( 2, 1, 99999.9)
CALL PUTARY( 2, 2, 0 0)
CALL PUTARY( 2, 3, 30.(:)

C** INITIALIZE ARRAY(3,V) - TOTAL RUNS **
C** ARRAY(3,2) = CURRENT RUN **

C RT = 100.0 + 100.0 * INT(GETARY(3, 5)/8)
RT - 200.0
CALL PUTARY( 3, 1, RT)
CALL PUTARY( 3, 2, 0.0)
CALL PUTARY( 3, 9, 0.0)
CALL PUTARY( 3,10, 0.0)
CALL PUTARY( 3,11, 0.0)
CALL PUTARY( 3,12, 0.0)
CALL SETTIM( 0, 0, 0, 0)

RETURN
END
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C.1.4.3 Subroutine NEXT.

$ INCLUDE: 'PRCTL.FOR'
SUBROUTINE NEXT

$INCLUDE: 'PARAM.INC'
$INCLUDE:' SCOM1.COM'

C** INITIALIZE INCUMBENT SOLUTION **
C** AND SELECT A RANDOM DIRECTION **

II = INT(GETARY(1,4))
12 = INT(GETARY(1, 5) )
13 - INT(GETARY(1, 6))
14 = INT(GETARY(1,7))
15 = INT(GETARY(1,8))
16 = INT(GETARY(l,9))
R = GETARY(3,2) - GETARY(3,10) - GETARY(3,11)
IC = INT(MOD(R, 12.0))
IM = 2*INT(IC/6.0) - 1.0
IF ((I1 + 12 + 13 + 14 + 15 + 16).GT.24) IM -1

10 SELECT CASE (IC)
CASE (0, 6)

I1 - Il + IM
IM = 11
IMIN - 3

CASE (1, 7)
12 = 12 + IM
IM = 12
IMIN - 2

CASE (2, 8)
13 = 13 + IM
IM = 13
IMIN - 2

CASE (3, 9)
14 = 14 + IM
IM = 14
IMIN = 2

CASE (4, 10)
15 = 15 + IM
IM = 15
IMIN = 2

CASE (5, 11)
16 = 16 + IM
IM = 16
IMIN = 2

END SELECT
IF (IM.LT.IMIN) THEN

IM = 1.0
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GOTO 10
END IF

C** INITIALIZE NEIGHBORING SOLUTION **

CALL ALTER(1, Il)
CALL ALTER(2, 12)
CALL ALTER(3, 13)
CALL ALTER(4, 14)
CALL ALTER(5, 15)
CALL ALTER(6, 16)
XX(4) = REAL(I1)
XX(5) = REAL(12)
XX(6) = REAL(13)
XX(7) - REAL(14)
XX(8) = REAL(15)
XX(9) = REAL(16)
RETURN
END

C.1.4.4 Subroutine RAN.

$INCLUDE: 'PRCTL .FOR'
SUBROUTINE RAN (IS,R)

$INCLUDE: 'PARAM.INC'
$INCLUDE: 'SCOMI .COM'

REAL Z, R, C, G
C = 4.294967296E+9
Z - GETARY(3, IS)
G = 5*Z + 99991
Z = MOD(G,C)
R = Z/C
CALL PUTARY(3, IS, Z)
RETURN
END
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C. 1.4.5 Subroutine EVENT.

$INCLUDE: 'PRCTL .FOR'
SUBROUTINE EVENT (I)

$INCLUDE: PARAM.INC'
$INCLUDE: 'SCOM •.COM'
C

DIMENSION A(10)
REAL BATCHES, PROBABILITY

C** COLLECT XX(1) SAMPLES AND TOTAL WAIT XX(2) **
************* ***************** **** ******* ****** ***

IF (TNOW.LT.500.0) RETURN
XX(1) = XX(1) + 1
XX(2) - XX(2) + ATRIB(1)

C** RECORD BATCH MEAN **

IF (XX(1).LT.50) RETURN
WAIT = XX(2)/50
XX(1) = 0.0
XX(2) - 0.0
CALL COLCT(WAIT,1)
BATCHES - CCNUM(1) - 10.0

****** *** * **** ******* ** ***** ***** **** ******* ***

C** STOP COLLECTING BATCHES WHEN CRITERIA MET: **
C** LESS THAN 100% CHANCE OF ACCEPTANCE OR 30 BATCHES

IF (BATCHES.LT.0) RETURN
CALL TEST (PROBABILITY)
TERM -= PROBABILITY*(i - BATCHES/31.25)
IF (TERM.LE.0.20) THEN

CALL ENTER (1, A)
RETURN

END IF
RETURN
END
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C.1.4.6 Subroutine TEST.

$ INCLUDE: 'PRCTL.FOR'
SUBROUTINE TEST (PT)

$INCLUDE: 'PARAM.INC'
$INCLUDE: 'SCOMI.COM'

REAL RT,RC,T,Y1, S1,N1,Y2, S2,N2,SP,DY,L,PT

C** DELTA FUNCTION **

Y1 - GETARY(I,I)
Y2 - CCAVG(1)
DY - (Y2-Y1)

C** CALCULATE PT; THE PROBABILITY OF ACCEPTANCE **

IF (DY.LT.0.0) THEN
PT - 1.0
RETURN

END IF
IT - INT(GETARY(3, 5))

C** ACCEPTANCE FUNCTION **

SELECT CASE(IT)
CASE 03, 8)

PT = 0.0
RETURN

CASE (1)
RC - GETARY(3, 2)
T - 0.58*0.95**(INT(RC/10.0)-I.0)
PT - EXP(-DY/T)
RETURN

CASE (9)
RC - GETARY(3, 2)
T - 0.75*0.95**(INT(RC/10.0)-1.0)
PT - EXP(-DY/T)
RETURN

CASE (2, 10)
RT - GETARY(3, 1)
RC - GETARY(3, 2)
T - 0.975 * (RT - RC) / RT
PT - EXP(-DY/T)
RETURN

CASE (3, 11)
RT - GETARY(3, 1)
RC - GETARY(3, 2)
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Si - GETARY(1,2) + 0.0001
Ni GETARY(1,3)
S2 - CC.3-TD(l) + 0.0001
N2 - CCNUM(1)
SP - SQRT(((N1..1)*S1**2+(N2-1)*S2**2)/(N1+N2-2))
T - 0.22 * SP * (RT - RC) / RT
PT - EXP(-DY/T)
RETURN

CASE (4, 12)
RT - GETARY(3, 1)
RC - GETARY(3, 2)
T - 0.563 * SQRT(1 - (RC/RT)**2)
PT - EXP(-DY/T)
RETURN

CASE (5)
RT - GETARY(3, 1)
RC - GETARY(3, 2)
T -1.92/LOG(RC + 1.0)
PT -EXP(-DY/T)
RETURN

CASE (6)
RT - GETARY(3, 1)
RC - GETARY(3, 2)
T - 2.49/LOG(RC + 1.0)
L - (RT - RC)/RT
PT - L*EXP(-DY/T)
RETURN

CASE (7)
RT - GETARY(3, 1)
RC - GETARY(3, 2)
T - 2.01/LOG(RC + 1.0)
L - SQRT(1 - RC**2/RT**2)
PT -L*EXP(-DY/T)
RETURN

CASE (13)
RT - GETARY(3, 1)
RC =GETARY(3, 2)
T = 2.25/LOG(RC + 1.0)
PT - EXP(-DY/T)
RETURN

CASE (14)
RT =GETARY(3, 1)
RC -GETARY(3, 2)
T - 2.93/LOG(RC + 1.0)
L - (RT - RC)/RT
PT = L*EXP (-DY/T)
RETURN

CASE (15)
RT - GETARY(3, 1)
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RC - GETARY(3, 2)
T - 2.36/LOG(RC + 1.0)
L - SQRT(1 - RC**2/RT**2)
PT - L*EXP(-DY/T)
RETURN

END SELECT
END

C. 1.4.7 Subroutine OTPUT.

$INCLUDE: 'PRCTL.FOR'
SUBROUTINE OTPUT

$INCLUDE: 'PARAM.INC?
$INCLUDE: 'SCOM1. COM'

REAL YC,YI,YB,RT,RC,PT,PC,SC,ST

C**INCREMENT THE NUMBER OF RUNS **
C**RETRIEVE YC AND YI SOLUTIONS **

RT = GETARY(3, 1)
RC = GETARY(3, 2)
CALL TEST(PT)
RC - RC + 1.0
CALL PUTARY(3, 2, RC)
CALL RAN(8,PC)
YC - CCAVG(1)
YI = GETARY(1, 1)
YB = GETARY(2, 1)
AO = GETARY(3, 9)
Al = GETARY(3, 10)
A2 = GETARY(3, 11)
A3 - GETARY(3, 12)

C** YC IS LESS THAN PREVIOUS YB SOLUTION **

IF (YC.LT.YB) THEN
AO = AO + 1.0
Al = Al + 1.0
CALL PUTARY(3, 9, AO)
CALL PUTARY(3, 10, Al)
CALL PUT(1)
CALL PUT(2)
GOTO 100

END IF

C** YC IS LESS THAN YI SOLUTION **

IF (PT.EQ.1) THEN
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AO - AO + 1.0
A2 - A2 + 1.0
CALL PUTARY(3, 9, AO)
CALL PUTARY(3, 11, A2)
CALL PUT(I)
GOTO 100

END IF
C* *** ** ** **** * * * **** *** **** ** ** *********** * *** ***** **

C** DETERMINE ACCEPTANCE OF A MOVE AWAY FROM OPTIMUM*
C** COMPARE THE PC AGAINST PT OF ACCEPTANCE **

******* ** ******** * *** ** ***** ** ********** ** ** * * **

IF (PC.LT.PT) THEN
AO - AO + 1.0
A3 - A3 + 1.0
CALL PUTARY(3, 9, AO)
CALL PUTARY(3, 12, A3)
CALL PUT(i)

END IF

C** ANNEALING COMPLETE, START FROM NEW SOLUTION **

100 IF (RC.LT.RT) RETURN
II - II - 1
ST - GETARY(3, 3)
SC - GETARY(3, 4) + 1.0
CALL PUTARY(3, 4, SC)
CALL OUT

C** TEST COMPLETE, START NEW TEST **

IF (SC.LT.ST) RETURN
II - II + 9

C** PROBLEM COMPLETE **

IF (II.LT.160) RETURN
WRITE(*,*) 'TYPE ENTER TO CONTINUE'
READ (*,*)
STOP
END
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C. 1.4.8 Subroutine PUT.

$ INCLUDE: 'PRCTL .FOR'
SUBROUTINE PUT(I1)

SINCLUDE: 'PARAM.INC'
$INCLUDE: 'SCOMi .COM'

CALL PUTARY(Il, 1, CCAVG(l))
CALL PUTARY(I1, 2, CCSTD(1))
CALL PUTARY(I1, 3, CCNUM(l))
CALL PUTARY(I1, 4, XX(4))
CALL PUTARY(I1, 5, XX(5))
CALL PUTARY(I1, 6, XX(6))
CALL PUTARY(I1, 7, XX(7))
CALL PUTARY(I1, 8, XX(S))
CALL PUTARY(I1, 9, XX(9))
RETURN4
END

C. 1.4.9 Subroutine OUT.

$INCLUDE: 'PRCTL.FOR'
SUBROUTINE OUT

$INCLUDE: 'PARAM.INC'
$INCLUDE: 'SCOMi .COM'

CALL TIME (RTIME)
IT - INT(RTIME)
IA - INT(II/l0) + 1
IS - INT (GETARY (3, 4))
IR - INT (GETARY (3, 2))
IMO - INT (GETARY (3, 9))
IMi = INT(GETARY(3,10))
1M2 =INT(GETARY(3,11))
1M3 = INT(GETARY(3,12))
OPEN(UNIT= 8,ACCESS-'APPEND' ,FILE-'VAL2 .DOC')
OPEN(UNIT= 9,ACCESS-'APPEND' ,FILE='SOL2 .DAT')
OPEN (UNIT-10,ACCESS-'APPEND' ,FILE-'REC2 .DOC')
WRITE(8, 10) IA, ' is I, "II

"+ INT(GETARY(2,4)) ,'' INT(GETARY(2,5)) ,

"+ INT(GETARY(2,6)) ,'',INT(GETARY(2,7)) ,''

"+ INT(GETARY(2,8)) ,'',INT(GETARY(2,9))

10 FORMAT(I5, Al, 15, Al
"+ 15, Al, I5, Al,
"+ 15, Al, 15, Al,
"+ 15, Al, 15)
WRITE(9, 20) IA ,'',IS ,,,IT,

"+ 1M3 , , ,GETARY(2,l) ,'',GETARY(2,2),
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20 FORMAT(I5, Al, I5, Al, I5, Al,
"+ I5, Al, I5, Al, I5, Al, IS, Al,
"+ I5, Al, F5.2, Al, F5.2, Al)
WRITE(10, *) IA, IS
WRITE(10, *) GETARY(3, 6)
WRITE(10, *) GETARM(3, 7)
WRITE(10, *) GETARY(3, 8)
CLOSE(UNIT - 8, STATUS - 'KEEP')
CLOSE(UNIT 9, STATUS - 'KEEP')
CLOSE(UNIT -10, STATUS - 'KEEP')

* * * ** **** * *** * *** ** * ** * ** ************** * *** ** ** ** * **

RETURN
END

C.1.4.10 Subroutine TIME.

******* ****'*** *** **** ***** *** ******* **** ****

C** RETURNS SYSTEM TIME IN SECONDS **

SUBROUTINE TIME (RTIME)
REAL RTIME
CALL GETTIM(IHR, IMIN, ISEC, II00TH)
RTIME - 3600*REAL(IHR)+60*REAL(IMIN)+REAL(ISEC)+

+ REAL(IlOOTH)/i00.0
RETURN
END
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C.2 Optimal Solution.

The optimum configuration is established using a PASCAL program written by 1A

Col Dietz. Given the one-step probability transition matrix, which describes the flow of

parts among the machine stations, and the number of machines at each station, the

program calculates the steady-state waiting time at each station. By changing the number

of machines at each station, the optimal configuration is inferred. Locating the optimal

configuration in the data and using the corresponding response value as the base response

value allows the solution quality to be measured. Since this value is also the minimum

response value, the validity of the choice is strengthened. The program and the results

inferred from the program are presented below. The base value selected is 15.49.

The program was used to generate the expected server utilizations for each of the

queues in a network with unlimited machines. These server utilizations were used to

determine which queues get used most and which get used least. The ideal allocation of

machines was identified using these relationships. Unfortunately, the optimum allocation

included fractional numberts of machines. Therefore, a minimum allocation of 22

machines was made. The average response times were determined by using the code with

the desired configuration. The Queues with the three highest response times were

allocated the remaining 3 machines. The total response time for the new configuration

was determined. A possible improvement was identified and the total response time

measured. This allowed a global optimum to be identified because the total response time

increased, rather than decreased.

Simulated Annealing and Local Search were applied to the simulation model. The

optimum configuration found using the theoretical inference was found to generete the

mimimum response value. The value was found to be 15.49 seconds of total waiting time,

not including service.
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C.2. 1 Mean Value Analysis.

program MVA;
{ ***************************************************** I

{* *1
{* Applies Mean Value Analysis to determine average *}
{* queue lengths response times, and utilizations *)
(* for stations in a closed queueing network.
{* Language: (standard Pascal except file mgt) *}
{* Turbo-Pascal 5.5 *1
{* Source: *}
{* D C Dietz, (513) 255-3362, ddietz@afit.af.mil *}
(* AFIT/ENS, Wright-Patterson AFB OH 45433-7765{* *1
f{***************************************************** }

const Nmax=50; {maximum number of customers in network)
Mmax=30; {maximum number of stations in network)

type Age- (old, new);
MIntArray-array[1..Mmax] of integer;
MRealArray-array([1..Mmax] of real;
PMatrix-array[l..Mmax,1..Mmax] of real;
OutMatrix-array[l..Mmax,O..Nmax] of real;

var I,J,K,M,N: integer;
CT,Lambda: real;
NServe: MIntArray;
S,V: MRealArray;
P: PMatrix;
C: array[1..Mmax,l..Nmax] of integer;
Q,R,U: OutMatrix;
Pr: array[old..new] of OutMatrix;
Dat,Out: text;

{ ****************************************************}

procedure Error(ErrCode,I,K: integer);

{Reports errors)

begin
writeln;
case ErrCode of

1: writeln('ERROR: N>Nmax (',Nmax:3,')');
2: writeln('ERROR: M>Mmax-1 (',Mmax-1:3,')');
3: writeln('ERROR: routing probs from station ',

1:3,' do not sum to 1.000');
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4: writeln('WARNING: Pr{',I:2,',0,',K:2,')<O ';
'may have numerical problems');

end; (case)
if (ErrCode-4) then begin

writeln('Press <enter> to resume');
readln;

end else begin
writeln ('Program terminated;

press <enter> to exit');
readln;
halt;

end; (else)
end; {Error}{******************************************************}

procedure ReadData (var N,M: integer;
var NServe: MIntArray;
var S: MRealArray;
var P: PMatrix;
var Dat: text);

{Reads input data from file assigned to text var 'Dat')
var I,J: integer;

Psum: real;
begin

readln (Dat, N, M);
if not (N in [l..Nmax]) then Error(l,0,0);
if not (M in (l..Mmax-1]) then Error(2,0,0);
for I:-1 to M do read(Dat,NServe[I]);
for I:-l to M do read(Dat,SCI]);
for I:-l to M do begin

Psum:-O;
for J:-1 to M do begin

read (Dat, P EJ, I] ) ;
Psum:-Psum+P [J, I];

end; (for)
if (Psum<0.999) or (Psum>1.001) then

Error(3,I,O);
end; {for}

P[l,l] :=I;
for J:=2 to M do Pt1,J]:=O;
P[1,M+1 :=l;
for I:-2 to M do beginP [I, I] :-P [I, 1])-1;

P[I,M+l] :=O;
end; (for)

end; {ReadData}

{ **************************************************** }

procedure VSolve(P: PMatrix;
M. integer;
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var V: MRealkrray);

(Solves simultaneous equations to obtain visit ratios)

var I,J,K,IC,KK,MM,IT,IS: integer;
B,W,C: real;
ID: MlntArray;
Y: M~ealArray;

begin

for I:-1 to M do ID[I]:=I;

repeat
KK:-K+1;
IS:-K;
IT:-K;
B:=abs (P (K,K]);
for 1:-K to M do for J:=K to M do

if (abs(P(I,J])>B) then begin
IS:-I;
IT:=J;
B:=abs(P [I, JD)

end; (if)
if (IS>K) then

for J:-K to MM do begin
C:-P(IS,J];
P [IS, J1 :-P M, J);
P[K,J] :-C;

end; (for)
if (IT>K) then begin

IC:-ID(K];
ID[K] :-ID[IT);
ID[IT] :=IC;
for I:-1 to M do begin

C:-P [I, IT];
P [I, IT] :'=P(I,K);
P(I,K] :=C;

end; (for)
end; (if)

for J:=KK to MM do begin
PCK,J] :=P(K,J]/P(K,K];
for I:=KK to M do begin

W:=P [I,K *P [K, J];
P [I, J] :-P[I, J] -W;
if (abs(P[I,J])<O.OOOO1*abs(W)) then

P(I,J] :=O;
end; (for)

end; {for}
K:=KK;

until (K-M);
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Y [M) : -P[M, M043/P [M, MJ
for I:-1 to M-1 do begin

K 'mM-I;
KK:-K+l;
Y [K] : -P[K, MM];
for J:-KI( to M do Y[K]:-Y[K]-P(K,J]*Y(J];

end; (for)
for 1:-i to M do for J:'m1 to M do

if (ID[J)=I) then V(I]:=Y[J];
end; {Volve}

procedure WriteOut(N,M: integer;
X: OutMatrix;
var Out: text);

(Writes output to file assigned to text var 'Out')
var I,K: integer;
begin

writein (Out);
write(Out,' N');
for I:'m1 to M do write(Out,' i=' ,I:2);
writein (Out);
writein (Out);
for K:=l to N do begin

write (Out,K:3);
for I:'ml to M do write(Out,X[I,K]:7:3);
writein (Out);

end; (for)
writein (Out);
writein (Out);

end; (WriteOut)

begin
assign (Dat, 'MVA.DAT');
assign (Out, 'MVA.OUT');
reset (Dat);
rewrite (Out);
writein;
writeln('*** Running program MVA **)

writein;
writeln('> Reading data ... '1);

ReadData (N, M, NServe, S,P, Dat) ;
writeln('> Calculating visit ratios
VSolve (P, M,V) ;
writeln('> Calculating performance measures *)

for I:-1 to M do begin;
for K:=1 to N do

if (K<NServe[I]) then C[I,K]:=K else
C[I,K] :=NServetl];

Pr[old,I,O] :=l;
QEI,O :0O;
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end; I{for)
for K:-1 to N do begin

for 1:-i to M do begin
if (NServe(IJ>-N) then R[I,K]:=S[I] else
if (NServe[I]-1) then
R[I,KJ:=S[I]*(1+Q[I,K-1]) else begin
R[I,KJ :-O;

for J:=1 to K do

end; {else)
end; {for}

CT:=O;
for 1:-i to M do CT:=CT+V[IJ*R[I,K];
Lambda:-K/CT;
for 1:-i to M do begin

Q[I,KJ :=R[I,K]*Laznbda*V[I];
U[I,K] :=S[I]*Lamnbda*V[I];

end; (for)
for I:=l to M do if (NServe(I]<N) then begin
for J:=l to K do Pr[new,I,J]:=U[I,K]*

Pr [old, I, J-1lI /C [I, J1;
Pr [new,I1,O0J :=l1;
for J:=l to K do Pr[new,I,OJ:=Pr[new,I,OJ-

Pr [new, I, JI;
if (Pr[new,I,O]<O) then Error(4,I,K);
end; {for}

Pr [old] :-Pr (new];
end; (for)

writeln('> Writing output ... ')

writein (Out, 'AVERAGE QUEUE LENGTHS
(including service)');

WriteOut (N,M,Q,Out);
writein (Out, 'AVERAGE RESPONSE TIMES

(including service)');
WriteOut (N,N, R, Out);
writein (Out, 'AVERAGE UTILIZATIONS');
WriteOut (N, M, U, Out);
close (Dat);
close (Out);
write in;
writeln('Program complete; output to file MVA.OUT');
writeln;

end. fMVAJO
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C.2.2 The Interred Optimum.

Service Time

Queue I1 Insl1 2 1Ins21 3 Ins3 4 Ins4 5 Ins5 6
Sec 5.0 2.0 5.0 2.0 5.0 2.0 5.0 2.0 5.0 2.0 5.0

One-Step Transition Probability Matrix

Queue I lnsl 2 Ins2 3 Ins3 4 Ins4 5 Ins5 6

1 0 1 0 0 0 0 O 0 0 0 0
Insl 0 0 0.5 0 0.5 0 0 0 0 0 0

2 0 0 0 1 0 0 0 0 0 0 0
Ins2 0.5 0 0 0 0 0 0.5 0 0 0 0

3 0 0 0 0 0 1 0 0 0 0 0
Ins3 0.5 0 0 0 0 0 0 0 0.5 0 0

4 0 0 0 0 0 0 0 1 0 0 0
Ins4 0 0 0.5 0 0 0 0 0 0 0 0.5

5 0 0 0 0 0 0 0 0 0 1 0
Ins5 0 0 0 0 0.5 0 0 0 0 00.5

6 1 0 0 0 0 0 0 0 0 0 0

Theoretical Performance (Including Service)

QUEUE 1 Insl 2 Ins2 3 Ins3 4 Ins4 5 Ins5 6

SERVERS 99 99 99 99 99 99 99 99 99 99 9
AVERAGE

QUEUE 6.618 2.647 4.412 1.765 4.412 1.765 2.206 0.882 2.206 0.882 2.206

LENGTHS

AVERAGE

RESPONSE 5.000 2.000 5.000 2.000 5.000 2.000 5.000 2.000 5.000 2.000 5.000

TIMES

AVERAGE

SERVER 6.618 2.647 4.412 1.765 4412 1.765 2.206 0.882 2.206 0.882 2.206

UTILIZATION
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Forming Ratios for Initial Allocation (22 Machines)

Queue Avgerage Common Allocating Minimum
Response Ratio 25 Allocation

Tune Machines
1 6.618 3 7.5 6
2 4.412 2 5 5
3 4.412 2 5 5
4 2.206 1 2.5 2
5 2.206 1 2.5 2
6 2.206 1 2.5 2

Identifying Most Probable Locations for Remaining Allocation (3 Machines)

SERVERS 6 99 5 99 5 99 2 99 2 99 2
AVERAGE

QUEUE 6.092 1.914 3.594 1.276 3.594 1.276 3.659 0.638 3.659 0.638 3.659
LENGTHS
AVERAGE

RESPONSE 6.365 2.000 5.632 2.000 5.632 2.000 11A7 2.000 11.47 2.000 11.47
TIMES

AVERAGE
SERVER 4.786 1.914 3.191 1.276 3.191 1.276 1.595 0.638 1.595 0.638 1.595

UTILIZATION
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Identiflying Possible Improvement (Swap 1 Machine from Queue 2 to Queue 1)

SERVERS 6 99 5 99 5 99 3 99 3 99 3
AVERAGE
QUEUE 8.096

LENGTHS 2.156 4.349 1.437 4.349 1.437 2.246 0.719 2.246 0.719 2.246
AVERAGE

RESPONSE 7.511 6.051
TIMES 2.000 2.000 6.051 2.000 6.252 2.000 6.252 2.000 6.252

AVERAGE
SERVER 5.390

UTILIZATION 2.156 3.593 1.437 3.593 1.437 1.797 0.719 1.797 0,719 1.797

Total Time: 38.369 Seconds

Identifying Move Away from the Global Optimum

SERVERS 7 99 4 99 5 99 3 99 3 99 3
AVERAGE

QUEUE 6.174 2.135 6.511 1,424 4.276 1.424 2.211 0.712 2.211 0.712 2.211
LENGTHS

AVERAGE
RESPONSE 5.7M3 2.000 9.148 2.000 6.007 2.000 6.213 2.000 6.213 2.000 6.213

TIMES
AVERAGE
SERVER 5,338 2.135 3.559 1.424 3.559 1.424 1.779 0.712 1.779 0.712 1.779

UTILIZATION

Total Time: 39.577 Seconds
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C.3 Data.

C.3.1 Comparing the Alternatives.

Geometric Temperature Solution Quality at 100 Trials

Run RI R2 R3 R4 R5 R6 61
1 3 3 3 4 4 3 69.57
2 4 4 4 3 2 3 31.15
3 6 5 5 3 3 3 .00
4 7 5 4 3 3 3 .53
5 7 4 6 3 2 3 4.07
6 6 6 6 2 2 2 8.80
7 8 4 4 3 3 3 3.30
8 7 5 4 3 3 3 .53
9 6 5 4 3 3 4 2.32

10 3 3 3 4 3 4 70.06
11 6 6 4 3 3 3 2.08
12 9 4 5 2 2 3 6.58
13 6 6 4 2 4 3 6.83
14 7 4 5 3 3 3 1.54
15 8 4 4 3 3 3 3.30

16 3 3 4 4 4 3 67.01
17 7 4 6 2 4 2 7.83
18 3 3 3 3 3 4 68.36
19 7 5 5 2 3 I 3 1.46
20 5 6 4 2 3 5 12.76
21 3 3 3 3 3 3 70.43
22 3 3 3 4 4 3 69.57
23 3 3 3 4 3 3 69.48

24 3 4 3 3 4 4 69.71
25 7 5 4 3 3 3 -53
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Linear Temperature Solution Quality at 100 Trials

Run R1 R2 R3 R4 R5 R6

1 3 3 3 4 4 3 69.57
2 4 4 4 3 2 2 29.88
3 8 4 4 3 3 3 3.30
4 7 4 4 3 4 3 4.29
5 6 6 5 3 3 2 3.07
6 6 5 5 5 2 2 5.29
7 7 4 5 2 4 3 5.73
8 6 6 4 3 3 3 2.08
9 7 4 4 3 3 3 4.14

10 3 3 3 4 3 4 70.06
11 7 5 4 3 3 3 .53
12 7 5 5 3 3 2 1.04
13 6 5 5 2 3 3 5.17
14 8 4 4 3 3 3 3.30
15 8 4 4 3 3 3 3.30
16 3 3 4 4 4 3 67.01
17 7 5 5 3 3 2 1.04
18 5 6 5 2 3 4 12.43
19 8 5 4 3 3 2 3.51
20 7 5 4 3 2 4 3.17
21 4 4 5 4 3 3 30.01
22 7 5 5 3 2 3 3.11
23 5 5 6 3 2 2 12.35
24 8 5 5 2 2 3 5.37
25 8 4 4 3 3 3 3.30
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Adaptive Temperature Solution Quality at 100 Trials

Run RI R2 R3 R4 R5 R6
1 3 3 3 4 4 3 69.57
2 4 4 4 3 2 2 29.88
3 8 4 4 3 3 3 3.30
4 8 5 3 2 4 3 17.73
5 7 5 5 3 2 3 3.11
6 5 5 4 4 3 3 10.14
7 9 4 4 2 3 3 7.53
8 5 5 5 3 3 3 9.71
9 9 5 4 2 3 2 6.52

10 3 3 3 4 3 4 70.06
11 7 6 4 3 3 2 3.04
12 6 5 4 3 4 2 5.34
13 6 6 4 3 4 2 5.32
14 7 5 4 4 3 2 5.50
15 9 4 4 2 3 3 7.53
16 3 3 4 4 4 3 67.01
17 6 5 5 3 4 2 3.50
18 3 3 3 3 3 4 68.36
19 9 5 3 2 3 3 18.32
20 7 4 6 2 4 2 7.83
21 3 3 3 3 3 3 70.43
22 3 3 3 4 4 3 69.57
23 3 3 3 4 3 3 69.48
24 3 4 3 3 4 4 69.71
25 5 5 3 2 3 4 22.27

189



Elliptic Temperature Solution Quality at 100 Trials

Run RI R2 R3 R4 R5 R6
1 3 3 3 4 4 3 69.57
2 4 4 4 3 2 2 29.88
3 8 4 4 3 3 3 3.30
4 7 5 4 3 3 3 .53
5 7 4 6 3 2 3 4.07
6 9 5 4 2 2 3 7.25
7 8 4 4 3 3 3 3.30
8 7 5 4 3 3 3 .53
9 6 5 4 3 3 4 2.32

10 3 3 3 4 3 4 70.06
11 6 6 4 3 3 3 2.08
12 9 4 5 2 2 3 6.58
13 6 6 4 2 4 3 6.83
14 7 5 4 3 2 4 3.17
15 8 4 4 3 3 3 3.30
16 3 3 4 4 4 3 67.01
17 6 6 4 2 4 3 6.83
18 3 3 3 3 3 4 68.36
19 7 5 5 2 3 3 1.46
20 8 4 3 2 4 4 18.11
21 3 3 3 3 3 3 70.43
22 3 3 3 4 4 3 69.57
23 3 3 3 4 3 3 69.48
24 3 4 3 3 4 4 69.71
25 8 5 4 3 3 2 3.51
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Logarithmic Temperature Solution Quality at 100 Trials

Run RI .R2 R3 R4 R5 R6
1 3 3 3 4 4 3 69.57
2 4 4 4 3 2 3 31.15
3 8 4 4 3 3 3 3.30
4 6 5 4 3 3 4 2.32
5 7 5 5 2 3 3 1.46
6 3 4 4 4 3 4 67.93
7 3 4 4 4 4 3 71.89
8 6 5 4 3 4 3 4.16
9 9 4 3 2 4 3 19.62

10 4 4 3 3 2 4 32.67
11 7 5 4 3 3 3 .53
12 3 3 4 2 4 4 68.26
13 4 3 3 2 3 4 35.04
14 8 5 5 2 2 3 5.37
15 7 5 5 3 3 2 1.04
16 8 4 3 2 4 4 18.11

17 3 3 3 4 4 4 69.58
18 3 3 4 3 3 3 68.79
19 4 4 4 3 2 3 31.15
20 3 4 4 4 3 4 67.93
21 3 3 3 3 3 3 70.43
22 3 3 3 4 4 3 69.57
23 3 3 3 4 3 3 69.48
24 3 4 3 3 4 4 69.71
25 8 5 4 3 3 2 3.51
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Linear Coefficient Solution Quality at 100 Trials

Run R1 R2 R3 R4 R5 R6
1 7 4 5 3 3 3 1.54
2 7 5 5 4 2 2 3.78
3 8 4 4 3 3 3 3.30
4 7 5 4 3 3 3 .53
5 8 5 5 3 2 2 3.84
6 7 5 5 2 3 3 1.46
7 7 4 5 3 3 3 1.54
8 5 7 4 2 3 4 12.50
9 7 4 4 3 3 3 4.14

10 7 5 5 4 2 2 3.78
11 7 6 4 3 3 2 3.04
12 7 5 5 3 3 2 1.04
13 6 5 5 3 3 3 .00
14 8 5 4 3 2 3 4.34
15 7 5 5 2 3 3 1.46
16 7 5 5 3 3 2 1.04
17 7 5 6 2 2 3 5.26
18 8 5 4 3 3 2 3.51
19 7 5 5 3 2 3 3.11
20 8 5 5 2 2 3 5.37
21 6 5 5 3 3 3 .00
22 6 5 5 5 2 2 5.29
23 7 5 4 3 2 4 3.17
24 7 6 4 2 3 3 5.05
25 7 5 4 3 3 3 .53
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Elliptic Coefficient Solution Quality at 100 Trials

Run RI R2 R3 R4 R5 R6

1 7 4 5 3 3 3 1.54
2 8 5 5 3 2 2 3.84
3 8 4 4 3 3 3 3.30
4 6 5 5 3 3 3 .00
5 7 5 5 3 3 2 1.04
6 8 5 4 3 2 3 4.34
7 8 4 4 3 3 3 3.30
8 7 5 6 2 2 3 5.26
9 7 5 5 3 2 3 3.11

10 7 5 5 2 3 3 1.46
11 7 6 4 3 3 2 3.04
12 7 5 5 4 2 2 3.78
13 7 5 4 2 3 4 4.89
14 7 5 5 3 3 2 1.04
15 7 5 5 2 3 3 1.46
16 8 4 4 3 3 3 3.30
17 8 4 4 3 3 3 3.30
18 7 5 4 3 3 3 .53
19 7 5 5 3 2 3 3.11
20 8 5 4 3 3 2 3.51
21 7 5 5 3 2 3 3.11
22 7 5 4 3 2 3 3.95
23 7 5 5 2 3 3 1.46
24 7 5 5 2 3 3 1.46
25 8 5 5 3 2 2 3.84
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Geometric Temperature Solution Quality at 200 Trials

Run RI R2 R3 R4 R5 R6
1 3 3 3 4 4 3 69.57
2 4 4 4 3 2 3 31.15
3 7 5 5 3 3 2 1.04
4 7 4 5 2 4 3 5.73
5 7 5 4 3 3 3 .53
6 3 4 4 4 3 2 67.93
7 3 4 4 4 4 3 71.89
8 6 5 5 3 3 3 .00
9 9 4 3 2 4 3 19.62

10 9 4 3 2 4 3 19.62

Linear Temperature Solution Quality at 200 Trials

Run RI R2 R3 R4 R5 R6
1 3 3 3 4 4 3 69.57
2 4 4 4 3 2 2 29.88
3 7 6 4 2 3 3 5.05
4 6 6 5 3 3 2 3.07
5 6 6 5 3 3 2 3-07
6 8 5 5 2 2 3 5.37_
7 8 4 5 3 3 2 4.03
8 6 5 5 3 3 3 .00
9 8 5 4 2 3 2 6.03

10 3 3 3 4 3 4 70.06
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Adaptive Temperature Solution Quality at 200 Trials

Run R1 R2 R3 R4 R5 R6

1 3 3 3 4 4 3 69.57
2 4 4 4 3 2 2 29.88
3 7 5 4 3 3 3 .53
4 8 4 4 2 4 3 6.36
5 7 4 4 3 5 2 6.30

6 5 4 6 5 2 3 11.69
7 6 5 5 3 3 3 .00
8 7 5 4 3 2 4 3.17
9 8 5 4 2 3 2 6.03

10 3 3 3 4 3 4 70.06

Elliptic Temperature Solution Quality at 200 Trials

Run .- R2 R3 R4 R5 R6

1 3 3 3 4 4 3 69.57
2 4 4 4 3 2 2 29.88
3 7 5 5 2 3 3 1.46
4 8 4 5 3 3 2 4.03
5 7 5 4 3 3 3 .53
6 8 4 4 4 3 2 6.88
7 3 3 4 4 4 3 67.01
8 6 5 5 3 3 3 .00
9 7 6 3 2 4 3 19.67

10 6 4 5 3 2 4 6.28
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Logarithmic Temperature Solution Quality at 200 Trials

Run RI R2 R3 R4 R5 R6
1 3 3 3 4 4 3 69.57
2 4 4 4 3 2 3 31.15
3 7 5 5 3 3 2 1.04
4 8 4 4 2 4 3 6.36
5 6 6 5 3 3 2 3.07
6 3 4 3 3 4 3 70.42
7 7 5 4 3 3 3 .53
8 7 5 5 3 3 2 1.04
9 4 4 4 4 3 3 31.63

10 4 4 4 3 2 2 29.88

Linear Coefficient Solution Quality at 200 Trials

Run RI R2 R3 R4 R5 R6
1 6 5 5 3 3 3 .00
2 7 5 4 3 3 3 .53
3 7 5 5 2 3 3 1.46
4 7 5 5 2 3 3 1.46
5 7 5 5 3 3 2 1.04
6 8 5 5 3 2 2 3.84
7 6 5 5 3 3 3 .00
8 6 5 5 3 3 3 .00
9 6 5 5 3 3 3 .00

10 8 5 4 3 3 2 3.51
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Elliptic Coefficient Solution Quality at 200 Trials

Run RI R2 R3 R4 R5 R6 bi
1 7 5 5 2 3 3 1.46
2 7 5 4 3 3 3 .53
3 7 5 5 3 3 2 1.04
4 7 5 5 2 3 3 1.46
5 8 5 4 3 3 2 3.51
6 8 5 5 3 2 2 3.84
7 8 5 5 3 2 2 3.84
8 7 5 5 3 3 2 1.04
9 7 6 4 3 3 2 3.04

10 6 5 5 3 3 3 .00
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Linear Temperature with Linaer Coefficient Solution Quality at 200 Trials

Run RI R2 R3 R4 R5 R6
1 7 5 5 2 3 3 1.46
2 8 4 4 3 3 3 3.30
3 8 4 4 3 3 3 3.30
4 6 5 5 3 3 3 .00
5 7 6 5 3 2 2 3.74
6 8 5 5 3 2 2 3.84
7 7 5 5 3 2 3 3.11
8 6 5 5 3 3 3 .00
9 8 5 4 3 3 2 3.51

10 7 5 5 3 2 3 3.11

Geometric Temperature with Linaer Coefficient Solution Quality at 200 Trials

Run R1 R2 R3 R4 R5 R6
1 7 5 5 3 3 2 1.04
2 7 6 5 3 2 2 3.74
3 7 5 5 3 3 2 1.04
4 7 6 5 3 2 2 3.74
5 7 5 4 3 3 3 .53
6 6 5 5 3 3 3 .00
7 7 5 5 3 3 2 1.04
8 7 5 5 3 3 2 1.04
9 7 5 5 4 2 2 3.78

10 7 5 4 4 2 3 3.53
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C.3.2 Comparing Local Search.

Local Search Efficiency ( I Iteration) 
( U T m

Run Accepted Best Moves Worst Better CUTm
Moves Moves Moves

1 8 8 0 0 466.00
2 5 5 0 0 313.00
3 4 4 0 0 308.00
4 3 3 0 0 268.00
5 8 8 0 0 439.00
6 9 9 0 0 554.00
7 4 4 0 0 307.00
8 6 6 0 0 346.00
9 6 6 0 0 399.00

10 8 8 0 0 415.00
11 6 6 0 0 347.00
12 7 7 0 0 402.00
13 8 8 0 0 426.00
14 5 -5 0 0 434.00
15 4 -0 0 308.00
16 7 :0 0 410.00
17 13 13 0 0 878.00
18 7 7 0 0 388.00_
19 7 7 0 0 402.00
20 8 8 0 0 427.00.



Local Search Efficiency (1 Iteration)

Run Accepted Best Moves Worst Better CPU Time
Moves Moves Moves

21 14 14 0 0 801.00
22 8 8 0 0 465.00
23 9 9 0 0 462.00
24 9 9 0 0 561.00
25 7 7 0 0 406.00
26 14 14 0 0 799.00
27 14 14 0 0 800.00
28 4 4 0 0 308.00
29 7 7 0 0 431.00
30 8 8 0 0 615.00
31 7 7 0 0 403.00
32 5 5 0 0 313.00
33 14 14 0 0 922.00
34 6 6 0 0 379.00
35 8 8 0 0 439.00
36 3 3 0 0 268.00
37 5 5 0 0 314.00
38 8 8 0 0 432.00
39 7 7 0 0 408.00
40 7 7 0 0 405.00



Local Search Solution Quality (1 Iteration)

Run RI R2 R3 R4 R5 R6
1 6 4 5 4 4 2 5.73
2 8 4 4 3 3 3 3.30
3 5 4 5 3 4 4 11.07
4 6 4 4 4 4 3 4.94
5 7 4 4 3 3 4 3.56
6 6 5 4 4 3 3 3.49
7 5 4 5 3 4 4 11.07
8 7 4 4 3 3 4 3.56
9 7 4 4 3 3 4 3.56

10 6 5 4 3 3 4 2.32
11 6 6 4 3 3 3 2.08
12 7 4 4 3 3 4 3.56
13 8 4 3 2 4 4 18.11
14 6 4 4 4 3 4 4.97
15 5 4 5 3 4 4 11.07
16 7 4 4 4 4 2 6.36
17 7 5 5 2 3 3 1.46
18 6 5 4 3 3 4 2.32
19 7 4 4 3 3 4 3.56
20 8 4 3 2 4 4 18.11
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Local Search Solution Quality (I Iteration)

Run RI R2 R3 R4 R5 R6 8i

21 7 5 6 2 2 3 5.26
22 6 4 5 4 4 2 5.73
23 7 4 4 3 3 4 3.56
24 6 5 5 3 3 3 .00
25 6 4 5 3 4 3 2.86
26 7 5 6 2 2 3 5.26
27 7 5 6 2 2 3 5.26
28 5 4 5 3 4 4 11.07
29 6 4 6 3 2 4 5.61
30 9 4 4 2 3 3 7.53
31 7 4 4 3 3 4 3.56
32 8 4 4 3 3 3 3.30
33 7 5 5 2 3 3 1.46
34 6 4 5 3 4 3 2.86
35 7 4 4 3 3 4 3.56
36 6 4 4 4 4 3 4.94
37 8 4 4 3 3 3 3.30
38 7 4 4 4 4 2 6.36
39 7 4 4 3 3 4 3.56
40 6 4 5 3 4 3 2.86
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Local Search Efficiency (3 Iterations)

Run Accepted Best Moves Worst Better CPU Time
Moves Moves Moves

1 8 8 0 0 1087.00
2 5 5 0 0 1261.00
3 4 4 0 0 1052.00
4 3 3 0 0 1164.00
5 8 8 0 0 1168.00
6 9 9 0 0 1676.00
7 4 4 0 0 1630.00
8 6 6 0 0 1488.00
9 6 6 0 0 2005.00

10 8 8 0 0 1354.00

Local Search Solution Quality (3 Iterations)

Run RI R2 R3 R4 R5 R6
1 6 4 5 4 4 2 3.30
2 8 4 4 3 3 3 3.49
3 5 4 5 3 4 4 3.56
4 6 4 4 4 4 3 2.08
5 7 4 4 3 3 4 4.97
6 6 5 4 4 3 3 1.46
7 5 4 5 3 4 4 3.56
8 7 4 4 3 3 4 .00
9 7 4 4 3 3 4 2.86

10 6 5 4 3 3 4 5.61
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Simulated Annealing with Logarithmic Cooling and
Linear Coefficient Efficiency (1 Iteration)

Run Accepted Best Moves Worst Better CPU Time
Moves Moves Moves

1 25 12 6 7 934.00
2 21 11 4 6 934.00
3 47 12 10 25 1739.00
4 17 7 1 9 693.00
5 29 8 7 14 1119.00
6 24 12 0 12 1042.00
7 18 7 2 9 998.00
8 37 13 4 20 1739.00
9 10 7 0 3 425.00

10 13 9 0 4 510.00

Simulated Annealing with Logarithmic Cooling and
Linear Coefficient Solution Quality (1 Iteration)

Run RI R2 R3 R4 R5 R6
1 6 5 5 3 3 3 .00

2 8 5 5 3 2 2 3.84
3 6 6 5 3 3 2 3.07
4 7 5 5 2 3 3 1.46
5 7 5 5 3 3 2 1.04
6 6 5 5 5 2 2 5.29
7 7 5 5 3 3 2 1.04
8 6 5 5 3 3 3 .00
9 7 6 4 _3 3 2 3.04

10 6 6 4 2 3 4 6.08
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Simulated Annealing with Logarithmic Cooling and
Elliptic Coefficient Efficiency (1 Iteration)

Run Accepted Best Moves Worst Better CPU Time
Moves Moves Moves

1 36 11 5 20 1844.00
2 34 14 4 16 1348.00
3 10 7 1 2 581.00
4 20 9 1 10 916.00
5 19 9 2 8 821.00
6 41 15 5 21 1656.00
7 19 9 3 7 923.00
8 10 8 0 2 583.00
9 29 9 4 16 1479.00

10 27 10 3 14 1227.00

Simulated Annealing with Logarithmic Cooling and
Elliptic Coefficient Solution Quality (1 Iteration)

Run RI R2 R3 R4 R5 R6 81
1 7 5 5 2 3 3 1.46
2 7 4 5 3 3 3 1.54
3 7 4 5 3 3 3 1.54
4 7 5 4 3 2 4 3.17
5 7 4 5 4 3 2 4.03
6 7 4 5 3 3 3 1.54
7 6 5 5 3 3 3 .00
8 7 5 4 3 3 3 .53
9 8 5 4 3 3 2 3.51

10 7 5 5 2 3 3 1.46

205



1. Aldous, David. Probabiliy Aprovmatio ia th Poisson Clumping Heuristic.
New York: Springer-Verlag, 1989.

2. Andradottir, Sigrun. "Discrete Optimization in Simulation: A Method and
Application," Proceedings of the 1992 Winter Simulation Conference: 483-486
(1992).

3. "Annealing," Encyclopedia Brittanica. 1: 429. Chicago: Encyclopedia
Brittanica, Inc., 1990.

4. Azadivar, Farhad. "A Tutorial on Simulation Optimization," PrdingsQo
the 1992 Winter Simulation Conference: 198-204 (1992).

5. Bohachevsky, Ihor 0., Mark E. Johnson, and Myron L. Stein. "Generalized
Simulated Annealing for Function Optimization," Technometrics.28: 209-217
(August 1986).

6. "Boltzmann Constant," MoGraw-il Encyclogedia of Phyics: 83. New
York: McGraw-Hill, 1983.

7. Cerny, V. "Thermodynamical Approach to the Traveling Salesman Problem:
An Efficient Simulation Algorithm," Journal of Qtimization Th y and
Application.iAl 41-51 (January 1985).

8. Cheh, Kah Mun, Jeffrey B. Goldberg, and Ronald G. Askin. "A Note on the
Effect of Neighborhood Structure in Simulated Annealing," mg ilisind
Operations Research.18: 537-547 (January 1991).

9. Collins, N. E. "Simulated Annealing--An Annotated Bibliography," American
Journal of Mathematical and Management Sciences. 8: 209-245 (1988).

10. Ferrara, Antonella and Riccardo Minciardi. "Resource Constrained Sheduling
via Simulated Annealing: A Discrete Event Approach," Proceedings of the 1990
European Simulation Symposium: 177-181 (1990).

206



11. Gelfand, Saul B. and others. "Theory and Application of Annealing
Algorithms for Continuous Optimization," Proceedings of the 1992 Winter
Simulation Conference: 494-499 (1992).

12. Glynn, Peter W. "Optimization of Stochastic Systems," Proceedings of the
1986 Winter Simulation Conference: 52-59 (1986).

13. Haddock, Jorge and John Mittenthal. "Simulation Optimization using
Simulated Annealing," Computers in Engineering. 22: 387-395 (1992).

14. Hartsfield, Nora and Gerhard Ringel. Pearls in Graph Theory: A

Comprehensive Introduction. San Diego: Academic Press, Inc., 1990.

15. Johnson, David S., and others. "Optimization by Simulated Annealing: An
Experimental Evaluation; Part I, Graph Partitioning," Operations Research. 37:
865-892 (November-Decenber 1989).

16. Johnson, David S., and others. "Optimization by Simulated Annealing: An
Experimental Evaluation; Part II, Graph Coloring and Number Partitioning,"
Operations Research. 39: 378-406 (May-June 1991).

17. Kiemele, Mark J. and Stephen R. Schmidt. Basic Statistics: Tools for

Continuous Improvement. Colorado Springs: Air Academy Press, 1990.

18. Kirkpatrick, S., C. D. Geliat, Jr., and M. P. Vecchi. "Optimization by
Simulated Annealing," Scenc..2_ : 671-680 (13 May 1983).

19. Larson, Richard J. and Morris L. Marx. An Introduction to Statistics and its
Applications. 2nd Edition. New Jersey: Prentice-Hall, 1986.

20. Lin, S. "Heuristic Programming as an Aid to Network Design," Networks. 5:
33-43 (1975).

21. Makridakis, Spyros and others. Forecasting Methods and Applications. 2nd
Ed. New York: John Wiley and Sons, 1983.

22. Metropolis, Nicholas, and others. "Equation of State Calculations by Fast
Computing Machines," The Journal of Chemical Physics. 21: 1087-1092 (June
1953).

207



23. Mihram, G. Arthur. Simulation: Statistical Foundations and Methodoloy.
New York: Academic Press, 1972.

24. Pegden, Dennis C. and Michael P. Gately. "A Decision-Optimization Module
for SLAM," Simlation. 34: 18-25 (1980).

25. Pritsker, A. Alan B. Simulation and SLAM 11. 3rd Edition. New York:
Systems Publishing Corporation, 1986.

26. Romeo, Fabio, and Alberto Sangiovanni-Vincentelli. "A Theoretical
Framework for Simulated Annealing," 6: 302-345 (1991).

27. Ross, Sheldon M. Introduction to Probability Models. San Diego: Academic
Press, Inc., 1989.

28. Tovey, Craig A. "Simulated Simulated Annealing," American Journal of
Mathematical and Management Sciences. 8: 389-407 (1988).

29. van Laarhoven, P. J. M., and E. H. L. Aarts. Simulated Annealing: Theory_
and Applications. Dordrecht: D. Reidel Publishing Company, 1987.

30. van Laarhoven, P. J. M., and others. "Job Shop Scheduling by Simulated
Annealing," Operations Research. 40:113-125 (Jan-Feb 1992).

31. Wong, D. F., H. W. Leong, and C. L. Liu. Simulated Annealing for VLSI
D Boston: Kluwer Academic Publishers, 1988.

32. Yan, Di and H. Mukai. "Stochastic Discrete Optimization," SIAM Journalf
Control and Optimization. 30: 594-612 (May 1992).

33. Yao, Xin. "Simulated Annealing with Extended Neighborhood,"
International Journal of Computer Mathematics. 40: 169-189 (1991).

208



ja/m

Captain Charles B. Warrender was born on 15 September 1961 in Wichita, Kansas.

He graduated from high school in Evergreen, Colorado in 1980 and attended the United

States Air Force Academy. He received the degree of Bachelor of Science in

Mathematical Sciences in May 1984. Upon graduation from the Academy, he entered

Space Operations training and received the Distinguished Graduate award. He

participated as a cadre member among the first Air Force officers to conduct crew

operations for the Global Positioning System (GPS). He developed many of the simulator

training scenarios for qualification training and certification as lead Planning and Analysis

Evaluations Officer. He developed and conducted launch and early orbit training

scenarios as a member of the launch rehearsal committee. After serving in this capacity

for three years, he transferred to the Combat Crew Training Squadron where he took

charge of the GPS Initial Qualification Training branch. He transitioned the training

program from a contractor-taught course to an Air Force course, saving the contractor's

expense, halving the training time, and standardizing the instructional material. Two

years later he assumed command of the Simulation Development Flight where he

supervised the development, maintenance, and employment of training scenarios for seven

satellite programs. In May of 1992 he entered the Graduate School of Engineering, Air

Force Institute of Technology, in pursuit of a Master's degree in Space Operations. He is

a member of Tau Beta Pi.

Permanent address: 31678 Gallery Lane

Evergreen, Colorado 80439

209



REPORT •CCUMENTATION PAGE .' c " 1c7.;l4.

1. AGENCY JSE ONLY Le'ave 3,ti) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED7 December 1993 I Master's Thesis
4. TITLE AND SUBTITLE S 5. FUNCING NUMBE:S

THE APPLICATION OF SIMULATED ANNEALING
TO STOCHASTIC SYSTEMS

6. AUTHCRtS)

Charles B. Warrender, Captain, USAF

7. ?E.FG,'M. *RGANIZAT;ON 4AME(Si AND ACORE55(ES) ,3. S.FR,%iNG :RGz .:ZATION
REOR7 .'LM8 ER

Air Force Institute of Technology, WPAFB OH 45433-6583 AFIT/GSO/ENS/93D-16

9. SPONSORING, MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORiNG MCNITORING
AGENCY REPCRT NLMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION ý AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

13. ABSTRACT (Maximum 200 words)

Simulated Annealing was used to optimize three constrained simulation models. For each of these models,
seven different acceptance functions were evaluated and compared against the performance of Local Search. These
comparisons demonstrated the effect that different acceptance functions have on the performance of the algorithm.
The performance was measured by the average solution quality and average efficiency.

The first model facilitated the implementation of Simulated Annealing using the SLAM simulation language.
The configuration space was described by only two decision variables. It demonstrated the viability of using
Simulated Annealing to optimize the variable settings in a simulation model. The second model (with six decision
variables) provided greater insight to the advantages and limitations of Simulated Annealing. This model was
implemented as an open queuing network. The third model, similar to the second, was implemented as a closed
queuing network. The results from this variation were completely unexpected. They showed a wide performance
separation among the different acceptance functions that was not present in the first two models.

No attempt was made to justify the use of Simulated Annealing from a theoretical perspective. Rather,
empirical results from the three models were used to infer the practical utility of the algorithm.

14. SUBJECT TERMS 15. NUMY6OF PAGES

Simulated Annealing, Simulation, Stochastic Models, Optimization 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGEI OF ABSTRACT

Unclassified Unclassified Unclassified UL

NSN 7540-0-280-5500 Standard Form 298 (Rev 2-89)
PrPeuribed t ANSi SIC Z39-18298-102


